
[bookmark: _GoBack]STG(14)13

	[image:]

	

	STG #37
WGSE - SEAMCAT Technical Group
Biel-Bienne, OFCOM Switzerland
11-12 March 2014

	

	
Date Issued: 05.03.2014

Source : 	BNetzA, Germany

Subject: 	Implementation of polygon distributions

	Document: for discussion/for information/for action

	Password protection required? (Y/N)
	N

	Summary:
This contribution discusses two options of the implementation of an algorithm to create distributions with polygon shapes. (A generic example of one option is provided with Annex 1 to this document.)
·
It shows that both options provide basically the intended distributions,
· it additionally explains the differences between both approaches which consequently might cause a different interpretation of the result.

	Proposal:
STG is invited to decide which of the options to implement and also to consider this implementation for the interfering link. STG is also requested to decide whether other shapes than hexagon, e.g. pentagon or octagon should be implemented.

	Background:
In the recent past some groups asked for distribution areas like hexagons for the Generic Systems, similar to the cell structure of Network Systems already implemented as 3GPP and 3GPP2, respectively.

General

Distribution shapes different from a circle can be considered only for non correlated relative locations.
Note: in case this feature should be implemented also for the link ILT - VLR, only the mode 'none' has to be taken into account.

In order to follow the description of the differences between the approaches it is important to know, how SEAMCAT generates the locations of the components. SEAMCAT does it with the following steps:

1. trial a random angle within the specified range, e.g. 0 ... 360 degree
2. trial a random factor for the distance depending on the defined Path distance factor and its range, e.g. uniform 0 ... 1
3. take as max distance the simulation / coverage radius
4. calculate the random distance depending on the defined Path distance factor
5. calculate the values for the x/y-coordinates (simple Pythagoras)
6. transpose the coordinates as defined on the Relative Location panel by Delta X and Delta Y
7. calculate the resulting distance between both components, e.g. VLT and VLR
1	Description if the options

1.1	Option 1 (on the examples JPK)	
The algorithm of this option is already used for the locations of Network Systems (AbstractDmaBaseStation) and hard coded limited to the hexagon.
The algorithm itself generally allows shapes of orders other than 6.
	
This approach repeats the above steps 1 to 5 until the x/y-coordinates are within the defined shape, i.e. the hexagon, and continues then with step 6.

The max distance used in step 3 is always the simulation / coverage radius, i.e. the circumscribed circle (circumcircle) of the polygon. More on that, see the below item 2 Discussion.

1.2	Option 2 (on the examples KK)
This option takes also the above steps 1 and 2.

Then it calculates as sub-step the max distance within the given shape taking account of the trial angle.
For this, it uses the simulation / coverage radius as circumcircle for the calculation of the incircle, needed to derive the inner max distance.

It continues with step 3, but uses as max distance the inner max distance at the trial angle.

	
2	Discussion

a) Both options distribute the locations within the borders of the defined shape (red in the below figures).
[image:][image:]

b) Applying the polar distance factor and a large number of trials, the amount of locations distributed into a part of the area seems to be the same, i.e. both distributions look like uniform dens distributed

c) The main difference between both options:
Option 1 throws angle and distance factor until the location is within the shape, but takes as max distance the given simulation / coverage radius;
Option 2 keeps the once generated angle and puts the location randomly alongside this angle inside the shape.

d) The below example shows one impact of the difference.
Given a scenario where the angle is defined with 45 degree constant, the coverage radius is set to 3 km and the distance factor is given with
[image:]
It leads to this discrete uniform distribution of distances[footnoteRef:1]:
[image:]
Note: x-axis are the trials, y-axis shows the distances

The max distance within this hexagon at an angle of 45 degree is 2.69 km.
Option 2 uses steps of 20% of this max distance, i.e. 0.538 km, whereas option 1 uses steps of 20% of the coverage radius of 3 km, i.e. 0.6 km.
 [1: concerning the uniform discrete distribution another input to STG is provided separately]

e) Having another look onto the uniform distributions alongside a single path, here either uniform or uniform polar, we will see that option 1 puts some of the trials back "ignoring" the required distribution.
[image:]
[image:]
Note: x-axis are the trials, y-axis shows the distances

The above figures have been generated with these algorithms[footnoteRef:2]:
[image:][image:]
with radius = coverage radius and simDist = max inner distance
The above shown algorithms are the simplified methods of both options. [2: coded using Scilab 5.4.1
]

image2.png
i

3
——— pobveon
——— checkarea oy
25 resulPK
——— Slestearr
2

y-
154 y

image3.png
KK

3
polygon
i S—
25 reui .
Seiecteaic
2

1 4

05

254 y

image4.png
[EEEe——

Type Parameters
O constant -
& Wi Constant 300
© Uniform Mean
O Gaussian
e St dev 00
© Uniform polar distance.

O Uniform polar angle tin (L
O User defined (stair) Wax 108

@© Discrete uniform

Max distance
Maxangle 360.0
Step. 025

[#
i
:

o Help

image5.png
|
II

L=t

image6.png
25

15

o0s

comparison polar

T] B
A
Py x
10 20 30 40 s0 50 70 50 50 100

option1 +option 2

image7.png
comparison uniform

image8.png
zor

zandom = rand();
optiond (1) = sqrt (random) *radius;
while optiond (i) > simDist

optiond (1) = sqrt (rand()) *radius;

ena
option? (1) = sqrt(random) *simDist;
end uniform polar

image9.png
for

B

zandom = rand();

optiond (1) = random*radius;

while optiond (i) > simDist
optiond (1) = rand() *radius;

end
option? (i) = random*simDist;

uniform

image1.wmf
ECC

Electronic Communications Committee

CEPT

