

Post processing plugin ShowLBTapproachR3 [footnoteRef:1] [1: Source:	Karl Koch; adhoc@heiseka.de
]

This plugin is not intended to offer a solution for simulating some kind of time domain behaviour with SEAMCAT, it only wants to show how some of such a behaviour could comparatively easily be simulated using a plugin. It is up to those requesting the consideration of the time domain during SEAMCAT simulations, to decide if it and, which of it could be implemented by defining also the parameters needed and their values.

The source code is available as annex to this description. It should be noted that it has not been written by a professional Java programmer

Note:
the plugin itself could “serve” more than one interfering system (interfering link) but it does not distinguish between those in terms of assigning each a different behaviour. It has also to be noted that the plugin does neither consider any antenna pattern nor any transmitter masks nor other propagation models than Extended Hata. It assumes always a co-channel outdoor scenario. The author is of the opinion that it is at that stage sufficient to show the principle. Further details might be a matter of subsequent versions.

Important note:
this plugin assumes the duty cycle as the active fraction of an interval time, i.e.

 with

and with DC in percent.

Description of „How it works”

As a post processing plugin it is called after each snapshot of the SEAMCAT simulation. Therefore it can only “manipulate” simulated results.

It offers these options:

· Simulate a variable packet length
· Simulate an LBT between the interfering transmitters
· Simulate a sensing between each interfering transmitter and the transmitter of the victim link
· Export some information about the simulation as an XML file
the corresponding XSD schema (simulateLBT.xsd) is separately available through the files attached

Figure 1: Configuration panel of the plugin [footnoteRef:2] [2: Note: the parameter “LBT listen time” is not used by this version of the plugin]

The main concept of simulating the time domain with this plugin is as follows:

Figure 2: principle of distributing packets randomly [footnoteRef:3] [footnoteRef:4]
 [3: Note: the length of the packet is given as input parameter and defers randomly from each other as a fraction of the input value for the packet length in case “simulate variable packet length” is selected.
The unit [ms] is to be understood as an example and is never considered as such.] [4: Added for version 3a: earliest start and latest stop of all occurrences are recorded.]

Procedure:

1. Collect data of the interfering transmitter
the information about each interfering transmitter (available through the plugin interface) is copied as an object “LBTcompontent” onto the list “simulatedTX” by setting at the same time the transmitter to “inactive” and assigning a random time within the interval time at which the transmission of the packet starts as well as the corresponding time the transmission of the packet stops.

2. Perform “duty cycle”
The plugin defines a random time “slot” within the interval time and looks at each LBTcompontent whether at that time its packet is in transmission mode. If so, this LBTcompontent is set to “active” and copied onto the list “simulatedTXcollision”.

Option 1: simulate LBT between the interfering transmitters:
For all transmitters on the list “simulatedTXcollision” an LBT procedure is performed (TX1 vs, TX2, TX3 … TXn; TX2 vs. TX3, TX4 … TXn and so on) by checking whether the power received exceeds the threshold. If the limit is exceeded, this transmitter is set to “inactive”, labelled as “dropped due to LBTilt” and copied onto the list “simulatedTXdropped” and then removed from the list “simulatedTXcollision”, otherwise it remains “active”.

Option 2: simulate sensing of the ILT (transmitter of the victim link):
For each transmitter on the list “simulatedTXcollision” a sensing of the VLT is performed. In case the received power exceeds a limit (different from the ILT), this transmitter is set to “inactive”, labelled as “dropped due to LBTvlt” and copied onto the list “simulatedTXdropped” and then removed from the list “simulatedTXcollision”, otherwise it remains “active”.

3. Consider the transmitters set to inactive
The plugin checks which of the transmitters are inactive and decreases the corresponding interfering power (iRSS) by 200 dB, i.e. it “switches it off” and updates the resulting iRSS for this snapshot accordingly.

4. Export information about the simulation (optional)
An XML file is generated containing this information:

the XML file could be imported into e.g. Microsoft Excel for post simulation analysis like this one:

Changes to version 3a:

oleObject1.bin

image2.wmf
IntervalTXonTXoff

TimeTimeTime

=+

oleObject2.bin

image3.wmf
100

Interval

packetLength

Time

DC

=×

oleObject3.bin

image4.png
Configure plugin

Plugin configuration

Roference: [Showl BTapproachd]

Description: This plug-nis to test a first approach of simulating LBT together with duty cycle

Name.

Type

|simulate LBT of ILTs

|Boolean

[duty cycle (% of time interval]

[Double

acket length (ms]

[Double

|LBT listen time [% of packet length]

[Double

|LBT threshold [dBm]

[Double

Inumber of nterfering systems (IL)

linteger

file name of the output data [without ext.

[String

[SimulateLBTr3.

(default path

[String

3

lsave output ile

[Boolean

[simulate sensing of VLT

[Boolean

fthreshold for sensing of VLT [dBm]

[Double

|simulate variable packet length

[Boolean

lrandom variation of packet length [%]

[Double

image5.png
random"slot" the VLR (victim) is looking at
to gather the information which of the
interfering transmitiers s active at that time.

\ B ocket transmitted
[] for each transmitter randomly

distribted over the interval time

— ‘ interval time —_—

image6.png
B atiibutes.

B atiibutes.

fotalllumberOfTXdropped

B atiibutes.

droppedTxLBTvIt

image7.png
70

50

s0

0

20

10

result

10

15 20 25 0 £

——droppedducto LBT ——dropped due to sensing

s

s0

image8.png
Configure plugin

Plugin configuration

Reference: | ShowLBTapproachR3a
Description: This plug-in is to test a first approach of simulating LBT together with duty cycle:

Name | Type | Value
‘simulate LBT of ILTs Boolean

duty cycle [% of time interval] Double

packetlength [ms] Double

LBT listen time [% of packet length] Double

LBT threshold [dBm] Double

number of nterfering systems (L) Integer 1

file name of the output data [without extension] simulateL BTpacket
defaultpath c
save outputile

simulate sensing of VLT

threshold for sensing of VLT [dBm]

simulate variable packetlength

random variation of packet length [%]

random packet lengthiduty cycle
packetlength extended by max of packetLengthVariation/duty cycle
Iateststop - earliestStart

ok | | cancel | [Help

image9.png
checks all transmitters whether they want To transmit simultanecusly and stores them onto similatedTXcollision by
= secting the status to 1 = active

* @param scenario
=/
private void findCollision(ScenarioInfo scenario) {

switeh (getIndexSelectCalculationModeTimeInerval()) {

case 0: ¢
intervalTime = packetDuracion / ducyCycle = 100;
break

B

case 1: ¢
double rPacket = packetDuration;]
double rVariation = rPacket+packetlengthVariation® stddev.nexcGaussian()/100;
zPacket += rVariation;
intervallime = rPacket / dutyCycle * 100;
break:

B

case 2: ¢
intervalTime = (packetDuration + packetlengthVariation * 2.57) / dutyCycle * 100;
// 2.57 corresponds to a probability of about 0.5% if the inverse cumulative distribution function
break;

B

case 3: ¢
intervallime = (latestStop - earliestStart);
break;

B

defanlt: {
intervalTime = packetDuracion / ducyCycle * 100;

double checkTime = Math.random() * intervallime; // a random slot within the time frame of intervalTime
if (indexIncervalTimeSelected == 3) {// a randonm time between earliestStart and latestStop
while (checkTime <= earliestStart || checkTime >= latestStop) (
checkTime = Math.random() * intervalTime;

image1.wmf
TXon

Interval

Time

DC

Time

=

