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qlrpfl2 2211 2427 point_to_point
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SUBROUTINE ADIFF: A functional explanation, by Sid Shumate.   
 
Last Revised: March 9, 2008. 
 
Attenuation from Diffraction for ITWOM subroutine. 
 
Note: Used with both point-to-point and area modes.  Called by lrprop. 
 
Descriptions derived from the Irregular Terrain Model description by George Hufford, 
2002, (ITMD), compared to the ITM.cpp prepared by J. D. McDonald and John 
Magliacane for compilation on unix and linux systems.  “Line” numbers refer to the 
ITM.cpp as line numbered by Bloodshed Software’s DevC++ print function.  “Alg” 
numbers refer to the algorithm formula in “The ITS Irregular Terrain Model, version 
1.22, the Algorithm” by G. A. Hufford, 1995 (the Algorithm).  “ITS67” numbers refer to 
the algorithm formulas in “ESSA Technical Report ERL 79-ITS 67, Prediction of 
Tropospheric Radio Transmission Over Irregular Terrain, A Computer Method – 1968” 
by A.G.Longley and P.L.Rice.  
 
For additional background on this function, see section 3-2, page 3-8 to 3-13 of ESSA 
Technical Report ERL 79-ITS 67 (ITS-67). 
 
From ITMD Section 10, 11, 12:      
 
The function adiff finds the “diffraction attenuation” at the distance d.  It uses a convex 
combination of smooth earth diffraction and double knife-edge diffraction.  A call with  
d = 0 is necessary to set up initial constants. 
 
Call inputs: 
 
d distance from transmit site at which diffraction attenuation is to be determined. 
  
Prop_type 
 
&prop  array prop with array elements: 
 
propa_type 
 
&propa array propa with array elements: 
 
 
 
defines private, or local, arguments:  
 
prop_zgnd   an array  containing values of the zgnd surface transfer impedance, with 
elements:  

prop.zgndreal,   the  real, (resistive) component of the surface transfer impedance;  



prop.zgndimag; the  imaginary, (reactive) component. 
 
 
wd1  1/wd, the inverse of the weighting factor wd  
xd1  dla added to a curvature adjustment equal to tha/gme. 
afo, attenuation from absorption and scattering from oxygen, water vapor, 

precipitation and terrain clutter. 
qk the product of the effective height of the transmit receive terminal 

multiplied by the receive terminal effective height, less the product of the 
transmit receive terminal height AGL multiplied by the receive terminal 
height AGL; later set to be equal to 1/|zgnd|.  

aht,  coefficient; see text below. 
xht;   coefficient; see text below. 
a  preset to be equal to dl2/2he (then to ds/th) for each terminal site 
q  utility variable; used for temporary holding of a value 
pk  absolute value of K;  stated as |K| in [Alg. 6.6] 
ds the difference, in meters, between prop.dist, the total path distance, and 

dla, the sum of the horizon distances.  It equals zero for one obstruction; 
positive for multiple obstructions; negative for line-of-sight. 

th the sum of the transmit and receive take-off angles to the peaks of the 
highest visible obstructions. 

wa  equal to (a * wn)1/3; calculated twice, once for each terminal.   
ar  attenuation due to rounded edge diffraction 
wd  the weighting factor for knife edge versus rounded edge 
adiffv  attenuation due to diffraction, the output value 
 
 
 
This subroutine: 
 

Uses d, prop_type, propa_type, and other information in arrays prop and propa in 
order to calculate the attenuation due to diffraction over an obstacle at a distance d 
using a convex combination of smooth earth diffraction and double knife-edge 
diffraction.   
 
1. In steps 1-3, wd1, the inverse of the weighting factor wd, is calculated.  An if 

statement is initiated; it operates from lines 225 to 254.  If d is not equal to zero, 
go to the else statement in step 13 below, on line 256.  If d is equal to zero, 
coefficients wd1, xd1, afo, ql, aht and x∆t will be determined:  

 
a. q is set to be equal to prop.hg[0] times prop.hg[1], the product of the 

transmit antenna height above ground level, multipled by the receive 
antenna height above ground level; units in meters, so output is in square 
meters.   

b. qk is set to be equal to the product of the effective height of the transmit 
antenna, prop.he[0], multipled by the effective height of the receive 



antenna, prop.he[1], less the value of  q from step a.; output is in square 
meters.   

 
Line  225: if (d = = 0) 

  q=prop.hg[0]*prop.hg[1]; 
   qk=prop.he[0]*prop.he[1]-q; 
 

2. A second if statement is initiated within the first; if prop.mdp, the mode of the 
propagation model, is less than zero, indicating operation in the point-to-point 
mode, the value of q is increased by 10. 

 
Line 230:  if (prop.mdp<0.0) 
                q+=10.0; 
                        

3. wd1 , the inverse of the weighting factor wd used to weigh between knife edge 
and rounded edge diffraction, is set to be equal to the square root of ( 1 + qk/q). 

 
Line 233:  wd1=sqrt(1.0+qk/q); 
 

4. xd1 is set to be equal to propa.dla + propa.tha/prop.gme. 
 
Line 234: xd1=propa.dla+propa.tha/prop.gme; 
 

5. In steps 5 and 6, the ∆h(s), the terrain irregularity factor ∆h, determined at a 
specified distance s, and σn(s), the standard deviation of ∆h(s), is determined.  
The value held by q is reset to be equal to the terrain irregularity parameter, dh 
(a.k.a. delta h or ∆h), multiplied by the distance compensation term (1.0-0.8*exp(-
propa.dlsa/50,000)), using a formula derived from Alg. (3.9).  See subroutine 
qlrps step 23, for the derivation. At this point, the value of q represents ∆h(s). 

 
Line 235:  q=(1.0-0.8*exp(-propa.dlsa/50e3))*prop.dh; 
   

6.  q is then further modified by setting it to be equal to the value of q obtained on 
line 235 in step 5 above, multiplied by 0.78*exp( -pow(q/16.0,0.25).  At this 
point, the value of q represents the σn(s). 

 
This step utilizes the formula: 
 
 σh(s) =  0.78 ∆h(s) exp [− (∆h(s) /H)1/4 ]   with H = 16 meters.” [Alg. 3.10] 
 
This formula, is found in the Algorithm, shows the relationship between ∆h and the 
terrain roughness factor σh used in Tech Note 101.  Here it is used to convert the 
value stored in q from the value for ∆h(s) to the value for σh(s). 

 
Line: 236:  q*=0.78*exp(-pow(q/16.0,0.25)); 

 



7. In this step, we determine the attenuation from absorption and scattering due to 
oxygen, water vapor, precipitation, and terrain clutter.   The value of afo, 
Attenuation From Other, is set to be equal to the lesser of: 

a. 15 
b. (2.171*log(1.0+4.77e-4*prop.hg[0]*prop.hg[1]*prop.wn*q)); [Alg. 4.10] 

Where:   
hg[0] is the transmit antenna height above ground in meters; 
hg[1] is the receive antenna height above ground in meters; 

   prop.wn is the wave number, (equal to freq. in MHz/47.7) 
q is currently equal to the value of σh(s), the terrain roughness 
factor at a specified distance “s”,  ( i.e., with distance correction). 

 
8. The value of qk is reset to be equal to 1/(absolute value of prop_zgnd).  
 
prop_zgnd is a complex double, representing the earth’s surface transfer impedance  
with two elements;  a real element, the resistance value, and an “imaginary” value, 
the reactance, which describes the phase mismatch between the voltage and the 
current, in terms of a capacitive value (current peak leads voltage peak) or a inductive 
value (current peak lags behind voltage peak).    

 
 Line 238:  qk=1.0/abs(prop_zgnd);  
 

9.  The value of aht is set to be equal to 20.0. 
 

Line 239: aht=20.0;       [Alg. 6.7] 
 
10. The value of xht is set to be equal to 0.0. 

 
Line 240: xht=0.0; 
 

11. A for statement is initiated with two loops, j=0 and j=1.  The for loop starts with 
j=0: 

 
 Line 242:   for (int j=0; j<2; ++j) 
  { 
 

a. On the first for loop, the value of a is set to be equal to: 
0.5*(prop.dl[0])2/prop.he[0];     [Alg. 4.15] 

   Where: 
prop.dl[0] is the distance from the transmit site to the horizon  

    prop.he[0] is the effective height of the transmit site 
 
Line 245:   a=0.5*(prop.dl[j]*prop.dl[j])/prop.he[j]; 
 

b. The value of wa is set to be equal to (a*prop.wn)1/3  [Alg. 4.16] 
Where:   



 a was determined in step 11(a.).  
   prop.wn is the wave number, = (frequency in MHz/47.7)   

Line 246: wa=pow(a*prop.wn,THIRD); 
 

c.  The value of pk is set to be equal to qk/wa.   [Alg. 4.17] 
Where:   
 qk was determined in step 8.  

   wa was determined in the last step, 11(b). 
 
Line 247: pk=qk/wa; 
 

d. The value of q is again reset, this time to be equal to:  
 ((1.607-pk)*151.0*wa*prop.dl[0]/a;   [Alg. 4.18 and 6.2] 

 
Line 248: q=(1.607-pk)*151.0*wa*prop.dl[j]/a; 
 

 
e. The value of xht is increase by adding the value of q.[Alg. 4.19 –height -gain] 

 
Line 249: xht+=q; 
 

f. Subroutine fht is called with inputs (q,pk). Subroutine fht then returns fhtv, the 
height-gain over a smooth spherical earth for use with the three-radii method.  
The value of aht is increased by adding the value returned by fht.   [Alg. 4.20] 

 
Line 250:  aht+=fht(q,pk); 
        } 
 

The for loop then repeats, with j=1: 
 

g. The value of a is set to be equal to: 0.5*(prop.dl[1])2/prop.he[1];   [Alg. 4.15] 
   Where: 

prop.dl[0] is the distance from the receive site to the horizon  
    prop.he[0] is the effective height of the receive site 
 

h. The value of wa is set to be equal to (a*prop.wn)1/3  [Alg. 4.16]  
Where:   
 a was determined in step 11(g.).  

   prop.wn is the wave number, = (frequency in MHz/47.7)  

i.  The value of pk is set to be equal to qk/wa.   [Alg. 4.17] 
Where:   
 qk was determined in step 8.  

   wa was determined in the last step, 11(h). 
 

j. The value of q is again reset, this time to be equal to: [Alg. 4.18 and 6.2]  
 ((1.607-pk)*151.0*wa*prop.dl[1]/a; 



 
k. The value of xht is increase by adding the value of q.  [Alg. 4.19] 

 
l. Subroutine fht is called with inputs (q,pk). Subroutine fht then returns fhtv, the 

height-gain over a smooth spherical earth for use with the three-radii method.  
The value of aht is increased by adding the value returned by fht.. 

  
The for loop completes.  The initial diffraction constants have been calculated, and 
the subroutine proceeds to report out diffraction attenuation = 0.0, indicating a 
coefficient setup run has completed: 

  
12.  adiffv is then set equal to zero. 

 
Line 253: adiffv=0.0; 

    } 
 

13. The if statement on line 225 has a matching else statement on line 256.  
Therefore, if the input value d is not equal to zero, indicating a second execution, 
following the required first execution with d=0 to set the coefficients, then:  

 
Line 256: else 
         { 

a. th is set to be equal to propa.tha + d*prop.gme;  [Alg. 4.12] 
Where:  

propa.tha, the total bending angle, set in lrprop; in radians (after 
correction).  
  d is the distance at which the attenuation is to be calculated. 

gme is the earth’s effective radius. 
 
Line 258:  th=propa.tha+d*prop.gme; 
 

b. ds is set to be equal to d − propa.dla; 
Where:  
 d is the distance at which the attenuation is to be calculated. 
 propa.dla is the sum of the two horizon distances, all in meters.  

 
NOTE 1: ds is the difference, in meters, between prop.dist, the total path distance, and 

dla, the sum of the horizon distances.  It equals zero for one obstruction; 
positive for multiple obstructions; negative for line-of-sight.   

 
NOTE 2: The following calculations produce absurd and non-a-number or infinity results 

if ds = 0.0; this is why the original ITM version of this subroutine cannot 
compute diffraction over a single obstacle, only multiple obstacles. 

 
Line 259: ds=d-propa.dla; 
 



c. q is reset to be equal to 0.0795775*prop.wn*ds*th*th; At this point, the 
value of q represents ∆h(s). 

 
Line 261:  q=0.0795775*prop.wn*ds*th*th; 
 

d.  subroutine aknfe is called twice to calculate the diffraction loss due to a 
knife edge at two adjacent peaks;  
the first time with input: (q*prop.dl[0]/(ds+prop.dl[0])),  
and the second time with input: (q*prop.dl[1]/(ds+prop.dl[1]));  
in each case, aknfe reports out a, the attenuation due to a single knife edge 
diffraction; the Fresnel integral (in decibels) as a function of the input, v2.  
Adiffv is then temporarily set to equal the sum of the two outputs from 
aknfe, the knife edge diffraction from two knife edges. [Alg. 4.14] 

  
Line 262:   
adiffv=aknfe(q*prop.dl[0]/(ds+prop.dl[0]))+aknfe(q*prop.dl[1]/(ds+prop.dl[1])); 
 
Next, the attenuation due to rounded earth is calculated in steps e. to h. 

e. a is set to equal ds/th, in meters/radian.  Note that if ds =0.0, (see above 
NOTE 2.) this calculation returns “inf”, indicating that it attempted to 
compute infinity.  

 
Line 263:  a=ds/th; 
 

f. wa is set to be equal to (a*prop.wn)1/3   [ Alg. 4.16] 
 
Line 264:  wa=pow(a*prop.wn,THIRD); 
 

g. pk is set to equal the value of qk/wa. 
 
Line 265:  pk=qk/wa;         [Alg 4.17] 
 
 q is reset to be equal to (1.607-pk) * 151.0 * wa * th + xht    [Alg. 4.18 and 6.2] 
 
Line 266:  q=(1.607-pk)*151.0*wa*th+xht; 
 

h. ar is the rounded earth attenuation, Ar, calculated as equal to: 
 0.05751 * q – 4.343 * log(q) – aht    [Alg. 4.20] 
 
which can be better stated using the specified log10, as: 

Ar = 0.05751 * q – 10 * log10(q) – aht  
 
Line 267:  ar=0.05751*q-10*log10(q)-aht; 
 
Next, the process of calculating wd, the weighting factor, wd, for knife edge vs rounded 
edge, is completed using wd1 and xd1. 



 
i.  q is reset to be equal to:  

 
(wd1+xd1/d)*mymin(((1.0-0.8*exp(-d/50e3))*prop.dh*prop.wn),6283.2) 

                [Alg. 4.9]  
   
Line 268:  q=(wd1+xd1/d)*mymin(((1.0-0.8*exp(-d/50e3))*prop.dh*prop.wn),6283.2); 
 

j. wd, the edge weighting factor, is set to be equal to:  
 (25.1/(25.1+sqrt(q)))          [Alg. 4.9] 

 
 
Line 269:  wd=25.1/(25.1+sqrt(q)); 
 

k. adiffv , here representing the total diffraction attenuation, is set to be equal 
to: ar * wd + (1.0-wd) * adiffv + afo        [Alg. 4.11]  

 
where; 
ar is the rounded earth attenuation 
afo is the attenuation from all other sources. 

 
 

 
Line 270: adiffv=ar*wd+(1.0-wd)*adiffv+afo; 
                 } 
 

14. The subroutine then returns the value of adiffv, the “diffraction attenuation” at the 
distance d. 

 
 return adiffv; 

 
  



SUBROUTINE ADIFF2: A description for ITWOM, by Sid Shumate.   
 
Revised Sept. 28, 2010 from straight line to 2nd scattered-diffracted path obstruction loss.  
Revised Sept. 27, 2010. to change obstruction loss to a scattered signal less diffracted 
signal cancellation.  Use with itwom2.0s.   
Revised Sept. 25 to add effective earth curvature to v2 distance calculations. 
For use with itwom2.0r. 
Revised Sept. 23, 2010. 
Revised: Aug 29, 2010.  For itwom2.0e    Being revised to add obstruction top foliage 
scatter adjustment. 
 
For itwom2.0c.   Aug. 11 Revised to include knife edge diffraction when receiver antenna 
is above clutter canopy, but still behind obstruction with grazing angle between 0.2 and 
1.22 radians. 
 
Aug. 8; Discussion of Knife Edge functions added.  Rounded edge from single knife edge 
completed.  Modified to add clutter loss to all secondary (post-obstruction) scenarios. 
 
Attenuation from Diffraction for ITWOM subroutine. 
 
Note: Used with both point-to-point and area modes.  Called by lrprop2. 
 
Descriptions derived from the Irregular Terrain Model description by George Hufford, 
2002, (ITMD), compared to the ITM.cpp prepared by J. D. McDonald and John 
Magliacane for compilation on unix and linux systems.  “Line” numbers refer to the 
ITM.cpp as line numbered by Bloodshed Software’s DevC++ print function.  “Alg” 
numbers refer to the algorithm formula in “The ITS Irregular Terrain Model, version 
1.22, the Algorithm” by G. A. Hufford, 1995 (the Algorithm).  “ITS67” numbers refer to 
the algorithm formulas in “ESSA Technical Report ERL 79-ITS 67, Prediction of 
Tropospheric Radio Transmission Over Irregular Terrain, A Computer Method – 1968” 
by A.G.Longley and P.L.Rice.  
 
Additional references may be made to:  “Tropospheric Radio Wave Propagation over 
Irregular Terrain; the Computation of Field Strength for UHF Broadcasting”, Research 
Department Report No. 1971/43, Nov. 1971, (BBC Report) Engineering Division, British 
Broadcasting Corporation. 
 
For additional background on this function, see section 3-2, page 3-8 to 3-13 of ESSA 
Technical Report ERL 79-ITS 67 (ITS-67), and Sections 5,7 and 8 of Tech Note 101, 
Volume 1. 
 
 
 
 
From ITMD Section 10, 11, 12:      
 



The function adiff2 finds the “diffraction attenuation” at the distance d.  It uses a convex 
combination of smooth earth diffraction and double knife-edge diffraction for a two-
obstacle scenario, and knife-edge diffraction for a single obstruction.  Clutter loss is 
calculated and added for all paths.  A minimum of two runs are required; the first with d 
= 0.0, is necessary to set up initial constants.  The second run calculates the attenuation at 
a distance d. 
 
 
Calculation of Attenuation Loss for An Obstacle with a Knife-Edge Peak: 
 
The subroutine adiff2 prepares the coefficients, then calls subroutine aknfe with input v2, 
where v is the internal wedge angle of an obstruction, to determine the attenuation for an 
obstruction with a sharp peak; whose peak approximates the shape of a knife edge 
perpendicular to the radio signal path. 
 
The argument v represents the “internal wedge phase angle”, and contains both an angle 
component and a frequency component. It is equal to: 
 
     v =2*(∆r/λ)1/2                [TN101 7.1a] 
 
∆r is defined as: ∆r = the sum of the distance from the transmit antenna to the knife edge 
+ distance from the knife edge to the receive antenna + distance equivalent of the phase 
reversal at the reflection point, less the length of a direct ray signal between the 
transmitter and the receiver antennas, even if it passes through the earth or an obstruction.  
 
There is a phase reversal at the reflection point that is always there for horizontal polarity, 
but is only found for vertical polarity at low grazing angles below the pseudo-Brewster 
angle.   This is considered in the phasing adjustments coefficient K.  
 
∆r is often approximated as: ∆r = dl0+ dl1-d = θ2(dl0*dl1/2d), but these approximations 
use several assumptions; the latter is particularly troublesome in that it includes 
assumptions that the knife edge is at a distance from both the transmitter and receiver 
locations, and approximately centered between the two.  This is often not the case when 
computing a radial, as the receive point is moved up, over, and down the other side of 
each obstruction in the path, so it is better to use a more rigorous geometric calculation of 
∆r.    
 
The original ITM uses the latter approximation, which can be approximately stated in 
terms of frequency in MHz: 
 

 v= + 2.583 θ(fMHz dl0*dl1/d)1/2,   [TN101 7.1b]  
 
in that dl0 and dl1  are approximately equal to the path lengths from the terminals to the 
peak of the obstruction, except when a terminal is very close to a tall obstruction.  
Converting frequency to wave number, and squaring v to effectively create the modulus, 
as used in the source code: 



 
  v= + 123.21θ(wn*dl0*dl1/d)1/2,      

 
   v2 = 15180.48*θ2(wn*dl0*dl1/d) 
 
Where λ is the wavelength.  Note that both ∆r and λ have to be stated in the same units of 
length (usually meters or kilometers) for v to be correctly defined, and this can only be 
used for an obstruction that breaks the line between the transmitter and receiver, as the 
sign would otherwise have to be transferred when v goes negative. 
 
The term ∆r is the difference, stated as a length between the sum of: the length of the 
signal path ray distance from the transmit antenna to the top of the obstruction and the 
signal path ray from the top of the obstruction to the receive antenna, less the direct line 
distance between the transmitter and the receiver.  Does this look familiar from the 
previous discussion of two-ray Multipath cancellation in the line of sight range?  When 
this difference is divided by the wavelength, the resulting term ∆r/λ represents the 
difference in length between the path distance of the direct path and the diffracted path, 
specified in number of wavelengths.   From this, we can see that the diffraction effects of 
an obstruction below the direct path, as it approaches the direct path, are related to the 
effects of a two-ray reflection occurring off of the ground or clutter canopy; both can be 
explained in terms of the effects of the wavelet interaction that produce the Cornu spiral.  
Take twice the square root of this difference, and you have the coefficient v.  
    
The coefficient v is then used to compute the diffraction approximation formula for a 
single knife edge, in the subroutine aknfe, which uses: 
 
  For v> 3, A(v,o) = 12.953 + 20 log10(v)  in dB.  [TN101 7.2]   
   
The input q as used as an input to aknfe represents the square of v.  The argument v can 
be negative, if the knife edge is approaching but not breaking the line between the 
transmitter and the receiver.  Once the knife edge cuts the direct path, v becomes positive. 
The above equation is modified in aknfe for use with v2 as:   
 

For v2<5.7, a=6.02+9.11*sqrt(v2)-1.27*v2 
      

For v2>5.7, a =12.953+10log10(v2). 
 
 
 
 
Calculation of Attenuation Loss for Two Obstacles with Knife-Edge Peaks: 
 
 
There is a significant difference between the dual knife edge method and the rounded 
earth method.  The dual knife edge method uses a version of a Vogler “three radii” 
method, the three radii being: 



  
1. The arc between the transmitter and the highest visible obstruction from the 

transmitter, 
2. The arc between the receiver and the highest visible obstruction from the 

receiver, and 
3. The arc between the two obstacle peaks.  

 
However, the methodology used in the ITM for knife edge diffraction has been modified 
from the methodology that L. E. Vogler developed for use in the ITS-67 software.  
Vogler used two separate calculations of knife edge-diffraction for each obstruction peak 
and averaged the results of the two for each peak; the ITM methodology was changed to 
a Epstein-Peterson methodology, which uses a single calculation of diffraction for each 
peak.  The ITM considers the path from the transmitter to the receiver obstacle peak as 
one knife-edge diffraction path, then considers the path from the transmitter obstacle 
peak to the receiver as the second knife-edge diffraction path, then sums the results of the 
two calculations.  
 
 
Rounded Obstacle Attenuation for Two Obstacles  
 
For rounded earth, a much different, “four radii” method, described in Tech Note 101 
section 8, developed by Vogler in 1964, is used.  The rounded earth methodology 
considers four radii;   
  

1. The arc between the transmitter and the highest visible obstruction from the 
transmitter, with radius a1;  

2. The arc between the receiver and the highest visible obstruction from the 
receiver, with radius a2; 

3. The arc between the transmitter obstruction peak and a theoretical knife edge 
halfway between the two obstacle peaks, with radius at; 

4. The arc between the receiver obstruction peak and a theoretical knife edge 
halfway between the two obstacle peaks, with radius ar. 

 
These radii are shown graphically in Figure 8.7 of Tech Note 101.  Note that the radii at 
and ar  end at the circled points where they cross the vertical centerline between the 
transmitter and the receiver; these lines are extended to show how radii a1 and  a2 end at a 
junction with the extensions of at and atr. 
 
Computing the rounded earth diffraction (treated as two low obstructions, and also used 
for multiple obstructions) the first run of the subroutine, with q =0.0, prepares the 
coefficients for an area mode calculation, or for subsequent point-to-point mode calls.  In 
the Algorithm, George Hufford stated that the calculation for A r, the rounded earth 
attenuation, consisted of summing four functions: 
 
 Ar = G(x0) – F(x1, K1) – F(x2, K2) – C(K0)     [TN101 8.1], [Alg. 4.20] 
 



Note that the two F functions, and the C function, are subtracted from the G function.   
 
 
 
This is computed as the attenuation from the theoretical knife edge in four functions, with 
each function computing for coefficients related to combinations of these four paths;  

a. a path from the transmitter to the peak of the transmitter horizon obstacle,  
b. a path from the transmitter obstacle peak to a theoretical peak between the 

transmitter and receiver obstacles, 
c.  a path from the theoretical peak to the peak of the receiver horizon obstacle, 

and 
d. a path from the peak of the receiver horizon obstacle on to the receiver 

computed as the “G” function, and from which the “F” functions, derived 
from the #1 and #2 arcs above, respectively, and the “C” function, are 
subtracted. 

 
And that these four consisted of: 
 
 G(x) = 20log(x-1/2ex/A)       [Alg. 4.23]  
 
where A is a dimensionless constant equal to 151.03.   
 
G(x) can be visualized as the diffraction loss over a theoretical knife edge at the center of 
the rounded obstruction area between the two obstructions, (which may be smooth or 
nearly smooth earth horizons or peaked obstacles).  It starts as a computation of signal 
cancellation due to the difference between the path length of a direct signal between the 
transmitter and the receiver (even as passes through the theoretical knife edge or the 
earth), and a path from the transmitter antenna to the top of the (theoretical) knife edge 
and to the receiver site, as per standard Fresnel-Kirchhoff optical diffraction theory.   
 
The term x in the G(x) equation is a combination of advanced mathematical functions: 
Airy Integrals.  Note that it includes the terms x1 and x2, which have been summed in the 
argument xht, and added to x, which is represented by q at that point in the subroutine.   
 

F(x1, K1) = 20log|(π/(21/3AB))1/2Wi(to – (x1/(21/3AB))2 )|  [Alg. 4.24] 
 

The first F function represents attenuation between the transmitter site and the transmitter 
obstruction computed as a signal cancellation due to a two-ray effect; the difference 
between the path length of a direct signal between the transmitter site and the transmitter 
obstacle peak, and a path from the transmitter site to a reflection point between the 
transmitter and the obstacle peak, and then to the top of the transmitter side obstacle 
peak.  
 

F(x2, K2) = 20log|(π/(21/3AB))1/2Wi(to – (x2/(21/3AB))2 )|  [Alg. 4.24] 
 



The second F function represents attenuation between the receiver site and the receive 
obstruction computed as a signal cancellation due to a two-ray effect; the difference 
between the path length of a direct signal between the receive site and the receive 
obstacle peak, and a path from the receive site to a reflection point between the receiver 
and the obstacle peak, and then to the top of the transmitter side obstacle peak.  

 
and: 

C(K) = 20log|1/2(π/(21/3AB))1/2(22/3K2t0
  - 1)Wi’(t0)2|  [Alg. 4.25] 

  
C(K) represents the non-phase-cancellation field strength loss, Ed/Eo, of the amplitude of 
the signal due to diffraction over a knife edge.      
 
The K function is a sum of phase considerations coefficient.  It varies with the reflection 
coefficient, and with the polarity of the signal.    
 
The G(x0) function is also stated as:  
 

G(x3,4) = 0.05751 x3,4 – 10log10 x3,4   dB               [ITS-67 3.37]  
 
The two  F(x1, K1) attenuation functions are driven by the effective heights of the 
transmitter and receiver, and each is computed during the first run, using a call to 
subroutine fht to compute the functions, then summed with the value preset in argument 
aht.  An if statement decides whether to compute the F functions for a single obstruction, 
where ds = zero, or for two separated obstructions. 
 
The distances x1 and x2 used in the two obstruction F function, are defined in the 
Algorithm as: 
 

x1,2 = A*B(K1,2)*α1,2*γ1,2*dL1,2          [Alg. 4.18]  
 
 where: A is the dimensionless constant 151.0. 

B is the B function of K, approximated as equal to (1607-pk), and limited 
to 1607 as the phase coefficient factor, K, here represented by the 
argument pk, approaches zero.  
α1,2 is represented by the argument wa, which represents a term equal to: 
(a1,2 *wn)1/3.   
a1,2 here represents the radius of the arc between the terminal and the 
horizon obstacle peak, 1=transmit, 2=receive. The argrument a1,2  is 
computed as: 

a1 = dL1
2/(2*he1), a2 = dL2

2/(2*he2), all units in meters.   [Alg. 4.15] 
 
γ1,2 is the terminal to horizon curvature, equal to 1/a1,2.       [ITS-67 3.29a]  
wn is the wave number, equal to the frequency in MHz divided by 47.7.
dL1, dL2 are the horizon distances, in meters. 



K, the phase coefficient factor, is represented by the argument pk.  The 
argument pk is equal to qk/wa, where qk is the inverse of the absolute 
value of the ground impedance, zgnd, a complex number.  So: 

 
K = pk =qk/wa = 1/( |zgnd\*wa) = 1/[|zgnd\*(a1,2 *wn)1/3] (xxx) 

 
The Algorithm notes that “for those values of K in which we are interested it is a good 
approximation to say C1(K) = 20 dB.”  The preset value of aht, equal to 20.0, is therefore 
an approximation for C(K), and: 
 

Ar= 0.05751 * q – 10*log10(q) – aht     [Alg. 4.20, 4.23,4.24, and 4.25] 
 
Where q, at that point, holds the value for x1,2.   ITS-67 states that x for rounded earth is 
defined by [ITS-67 3.9a] to be x =18000σ/f, where the frequency f is in MHz and the 
ground constant σ for average ground is 0.005 mho/m. (Table 2, p.8, ITS-67]. 
 
And we can now apply the theory, methodology and equations shown above, into the 
source code below. 
 
For a two-obstacle scenario, where the receive site is beyond the peak of the 2nd obstacle, 
the Irregular Terrain Models compute both the knife edge and rounded edge attenuation 
values, and combine the results in a weighted manner to provide a weighted average 
value of attenuation.   The weighting system is based on the roughness of the terrain, as 
quantified in the delta-h (d∆) coefficient, as determined by the extended version of the 
terrain irregularity factor computation employed in the ITM and the corrected version of 
the terrain irregularity factor computation employed in the ITWOM.   The calculation of 
the terrain irregularity factor delta-h, as described in the FCC rules and regulations is 
limited to line-of-sight use, and therefore to a maximum distance of 50 km; the ITM 
version, which is specifically designed for use with a 30-arc-second database only, 
extends into the diffraction range, and calculates out to 25 terrain database intervals, or 
up to 800 kilometers.  The ITWOM calculates out to 800 kilometers, irrespective of the 
database used.  (See chapter on subroutine d1th1 or d1th2)   This weighing system was 
developed by Longley and Rice for the ESSA ITS-67 computer implementation, and is 
not discussed in Tech Note 101. 
 
When two obstructions are found, but the receive antenna is located at the peak of the 2nd 
obstruction, the field strength arriving at the second peak is calculated using knife-edge 
methodology only  (see the section below on “Rounded Obstacle Attenuation for a Single 
Obstacle”).   To this, an additional knife edge-peak diffraction loss of 5.8 dB is added, 
and the second peak is treated as a secondary transmission site.  The path attenuation 
from the second peak to the receive site is calculated in a similar manner to that stated 
above for a path just past a single obstruction, until the receive site grazing angle drops 
below 0.2 radians.   
 
When the receive site grazing angle past the second obstruction peak is less than 0.2 
radians, the original ITM methodology developed by Vogler, with a correction for the 



error that crept into the ITM when Vogler’s two-obstruction, four-calculation method was 
simplified to a two-calculation method, is used to calculate the attenuation to the receive 
site.  
 
Past the peak of a first obstruction, we take a cue from the Epstein-Petersen methodology.   
As the receive site moves past the diffraction point at the peak of the obstruction, if the 
receive site grazing angle exceeds 0.2 radians (11.5 degrees), the field strength diffracted 
across the peak of the obstruction is treated as a secondary transmitted signal, and the 
path from the obstruction peak to the receiver is treated as a line-of-sight transmission 
from the obstruction peak to the receiver site.  The “back of the obstruction” path is 
processed in one of three methods. 
 
If the receive site grazing angle exceeds 1.22 radians (70 degrees), the path beyond the 
obstruction peak is heavily shadowed; the obstruction as viewed from the receiver is 
either a cliff face or tall building, and an empirically derived 20 dB of loss, similar to the 
C(K) approximation above, is added. 
 
If the receive site grazing angle is between 0.6 radians (33 degrees) and 1.22 radians, the 
path is treated as a signal transmitted at the peak of the first obstruction, at the height of 
the clutter canopy, to a receive site that is also at or below the clutter canopy line, as a 
barely line-of-sight cluttered path down the side of a hill or mountain.   The Shumate’s 
approximations for cluttered path attenuation are applied in the same manner as they 
were for the line-of-sight path.  
 
If the receive site grazing angle is between 0.2 and 0.6 radians, the path is treated as a 
signal transmitted above the height of the clutter canopy, to a receive site that is also at or 
below the clutter canopy line, but far enough beyond the receive-side base of the 
obstruction so that a significant portion of the path is through clear air.  The Shumate’s 
approximations are applied as they were for the line-of-sight path.  
 
When the receive site is far enough away from the obstruction that the receive site 
grazing angle is less than 0.2 radians, the original Tech Note 1 Section 7 methodology is 
referenced.  The TN101 methodology was modified to match the weighted knife-edge vs. 
rounded edge methodology developed by Lewis E. Vogler from Fresnel-Kirchoff 
diffraction theory, for the ITS-67 implementation.  The knife-edge methodology was 
further simplified from a two-calculation per obstruction method to a Epstein-Peterson 
single calculation-per-obstruction method for use in the ITM, and is used to calculate the 
attenuation to the receive site.  In the ITWOM, a correction is added for the mathematical 
error that crept into the ITM when Vogler’s two-obstruction, four-calculation method was 
simplified to a two-calculation method.  Then Shumate’s approximations are used to 
calculate and add the clutter loss to the total attenuation. 
 
We also note that at a distance, the terrain irregularity factor (dh) for a path extending 
over tall obstructions tends to rise to a value in the hundreds of meters, so the weighting 
of the results causes the knife-edge results to be relied on more than the rounded-edge 
results. 



 
 
Attenuation for a Single Obstacle 
 
Since the ITM does not consider a single, isolated obstacle, for the ITWOM it is 
necessary to derive the computer implementation equations for the ITWOM from the 
theory provided in Section 7 of Tech Note 101. 
 
In the ITWOM, when the receive site is atop the peak of the first obstruction, the signal is 
treated as a line-of-sight signal with 5.8 dB of standard knife edge diffraction loss (for 
v2=0.0) added.   
 

For the single-obstruction knife-edge calculation, the equations used for the 
Epstein-Peterson calculation for the transmitter site to 2nd obstruction peak are applicable, 
with the 2nd obstruction peak location replaced with the receive site.  Subroutine aknfe is 
called to calculate the single peak knife edge, this time with the variable q representing 
the entire value of v2.  The knife edge diffraction attenuation for a single obstacle, A(v,0), 
is then stored temporarily in variable adiffv2. 
 

For a three-arc-second database, the terrain points are approximately 100 meters 
apart, and as more detailed databases are employed, the terrain interval, the distance 
between terrain points in the database, is progressively less.  In the source code, the 
distance between the peak of the highest obstacle “visible” from the transmit site, the 
transmit horizon obstacle, and the peak of the highest obstacle “visible” from the receive 
site, the receive horizon obstacle, is held by argument ds.  The ITWOM only performs a 
single obstruction calculation when ds is equal to zero.  This only happens when the two 
horizon obstacle peaks are at the same terrain point (in the source code, when ds ==0.0), 
a common occurrence in a normal radial calculation run.   At this point, the obstacle peak 
is as close to a true “knife-edge” as the program can determine, given the size of the 
intervals in the terrain database.  To also calculate and add in a weighted manner the 
rounding of a single obstacle would make little or no difference in the result.  Therefore, 
the ITWOM computes a single obstacle as a simple knife-edge.   If the two “horizon 
obstacles” are as little as one terrain database interval apart, (in the source code, when 
ds>0.0) the two-obstacle calculations are utilized, and consideration of rounding of the 
obstacles is included.     
 

In the ITWOM, when the receive site is atop the peak of the first obstruction, the 
signal is treated as a line of sight signal with 5.8 dB of standard Fresnel-Kirchhoff knife 
edge diffraction loss (for v2=0.0) added.   
 

Past the peak of a first obstruction, a cue is taken from the Epstein-Petersen 
methodology.   As the receive site moves past the diffraction point at the peak of the 
obstruction, the field strength diffracted across the peak of the obstruction is treated as a 
secondary transmitted signal, and the path from the obstruction peak to the receiver is 
treated as a line-of-sight transmission from the obstruction peak to the receiver site.  The 
“back of the obstruction” path is processed in one of three methods. 



 
If the receive site grazing angle exceeds 1.22 radians (70 degrees), the path 

beyond the obstruction peak is heavily shadowed; the obstruction as viewed from the 
receiver is either a cliff face or tall building, and an empirically derived minimum 
average attenuation of 20 dB, is added to the standard peak diffraction loss of 5.8 dB. 
 

If the receive site grazing angle is between 0.6 radians (33 degrees) and 1.22 
radians, the path is treated as a secondary signal, weakened by a standard peak diffraction 
loss of 5.8 dB, transmitted at the peak of the first obstruction, at the height of the clutter 
canopy, to a receive site that is also at or below the clutter canopy line, as a barely line-
of-sight cluttered path down the side of a hill or mountain.   The Shumate’s 
approximations for cluttered path attenuation are then calculated and added in the same 
manner as they are for a primary line-of-sight path.  
 

If the receive site grazing angle is between 0.6 and 0.2 radians, the path is treated 
as a secondary signal, weakened by a standard peak diffraction loss of 5.8 dB, transmitted 
at the peak of the first obstruction, above the height of the clutter canopy, to a receive site 
far enough beyond the receive-side base of the obstruction so that a significant portion of 
the path is through clear air.  The Shumate’s approximations for clutter loss near the 
receive site, are applied as they were for the line-of-sight path.  
 

If the receive site grazing angle is below 0.2 radians, the path is treated as a signal 
transmitted above the height of the clutter canopy, with its strength determined by 
weakening the original transmitter strength by knife edge loss for a single obstacle, 
computed according to Fresnel-Kirchhoff theory, to a receive site that is also at or below 
the clutter canopy line, but far enough beyond the receive-side base of the obstruction so 
that a significant portion of the path is through clear air.  The Shumate’s approximations 
for clutter loss near the receive site, are applied as they were for the line-of-sight path.  
 
  
In this subroutine: 
 
Call inputs: 
 
d distance from transmit site at which diffraction attenuation is to be determined. 
  
Prop_type 
 
&prop  array prop with array elements: 
 
propa_type 
 
&propa array propa with array elements: 
 
 
defines private, or local, arguments:  



 
prop_zgnd   an array  containing values of the zgnd surface transfer impedance, with 
elements:  

prop.zgndreal,   the  real, (resistive) component of the surface transfer impedance;  
prop.zgndimag; the  imaginary, (reactive) component. 

 
wd1  1/wd, the inverse of the weighting factor wd  
xd1  dla added to a curvature adjustment equal to tha/gme. 
qk the product of the effective height of the transmit receive terminal 

multiplied by the receive terminal effective height, less the product of the 
transmit receive terminal height AGL multiplied by the receive terminal 
height AGL; later set to be equal to 1/|zgnd|.  

aht represents the attenuation from both F(x) functions and the C(x) function 
included in the rounded earth attenuation equation for ar. 

xht   sum of the values for x1 and x2   
x1,2,3,4  approximations of Airy functions; used in calculating G(x) and F(x) 

rounded edge functions. 
a the effective earth’s radii a0,1 for the terrain between the antennas and their 

horizons, preset to be equal to dl2/2he (then to ds/th) for each terminal site; 
also defined as a3,4 for the effective earth’s radius for the terrain between 
horizons.  

q  utility variable; used for temporary holding of a value. 
pk  absolute value of K;  stated as |K| in [Alg. 6.6]. 
ds the difference, in meters, between prop.dist, the total path distance, and 

dla, the sum of the horizon distances.  It is calculated twice; the first time 
it is limited to be 0.0 or greater to avoid calculation errors in the geometric 
distance calculations.  The second time it is calculated, it equals zero for 
one obstruction, is a positive value for multiple obstructions, and is a 
negative value for line-of-sight. 

th the sum of the transmit and receive take-off angles to the peaks of the 
highest visible obstructions. 

wa  equal to (a * wn)1/3; calculated twice, once for each terminal.   
ar  attenuation due to rounded edge diffraction 
wd  the weighting factor for knife edge versus rounded edge 
adiffv2  attenuation due to diffraction, the output value 
toh  height of transmit obstruction above t-r line, in meters AMSL 
toho  height of transmit obstruction above t-rcvr obstruction line, in meters 
roh  height of receive obstruction above t-r line, in meters AMSL 
roho  height of receive obstruction above tx obstruction-r line, in meters  
dto  distance from transmitter to obstruction peak for one obstruction, in m. 
dto1  distance from transmitter to 1st obstruction peak for 2 obstructions, m. 
dro  distance from receiver to obstruction peak for one obstruction, in m. 
dro2  distance from receiver to 2nd obstruction peak for 2 obstructions, m. 
dtro  distance from transmitter to receive obstruction top, in meters 
drto  distance from receiver to transmitter obstruction top, in meters 
dtr  distance from transmitter to receiver, in meters  



dhh  distance from obstruction peak to obstruction peak, in meters, case 1 
dhh1  distance from obstruction peak to obstruction peak, in meters, case 2 
dhh2  distance from obstruction peak to obstruction peak, in meters, case 3 
rd  ground distance from receive site to obstruction peak, = prop.dl[1]; meters 
dhec dh extended constant for dh beyond the line-of-sight range, equal to 2.73. 
dfdh delta h (dh) for diffraction range. This can be preset for test purposes by 

an input value to point to point set at a value above 1. 
 
 
This subroutine: 
 

Uses d, prop_type, propa_type, and other information in arrays prop and propa in 
order to calculate the attenuation due to diffraction over one or two obstacles at a 
distance d using a convex combination of smooth earth diffraction and double knife-
edge diffraction.   

 
b. First checks if the optional diffraction range delta-h (terrain height irregularity 

coefficient) is set equal to or greater than 1 in the point_to_point call input 
coefficients.   If set to greater than zero, the optional value replaces the existing 
calculated value of delta-h stored in prop.dhd.   

 
Line  (new):  dfdh=prop.dh; 
   if (((int) (prop.dhd))>0)  

  dfdh=prop.dhd; 
 

In the first run, with d = zero, coefficients for a two-peak, four radii rounded earth 
computation are prepared.  
    
c.  An if statement is initiated; if d is equal to zero, coefficients wd1, xd1, ql, aht and 

xht will be determined.   
 

I. q is set to be equal to prop.hg[0] times prop.hg[1], the product of the 
transmit antenna height above ground level, multipled by the receive 
antenna height above ground level; units in meters, so output is in meters 
squared.   

II. qk is set to be equal to the product of the effective height of the transmit 
antenna, prop.rch[0], multipled by the effective height of the receive 
antenna, prop.rch[1], less the value of  q from step a.; output is in square 
meters.  

III. dhec , the terrain height, extended, constant, is preset to be equal to 2.73.   
 
Line  225: if (d = = 0) 

  q=prop.hg[0]*prop.hg[1]; 
   qk=prop.rch[0]*prop.rch[1]-q; 
   dhec=2.73; 
 



d. A second if statement is initiated within the first; if prop.mdp, the mode of the 
propagation model, is less than zero, indicating operation in the point-to-point 
mode, the value of q is increased by 10. 

 
Line 230:  if (prop.mdp<0.0) 
                q+=10.0; 
                        

e. The argument wd1, the inverse of the weighting factor wd used to weigh between 
knife edge and rounded edge diffraction, is set to be equal to the square root of ( 1 
+ qk/q). 

 
Line 233:  wd1=sqrt(1.0+qk/q); 
 

f. xd1 is set to be equal to propa.dla + propa.tha/prop.gme. 
 
Line 234: xd1=propa.dla+propa.tha/prop.gme; 
 

g. In steps 5 and 6, the ∆h(s), the terrain irregularity factor ∆h, determined at a 
specified distance s, and σn(s), the standard deviation of ∆h(s), is determined.  
The value held by q is reset to be equal to the terrain irregularity parameter, dh 
(a.k.a. delta h or ∆h), multiplied by the distance compensation term (1.0-0.8*exp(-
propa.dlsa/50,000)), using a formula derived from Alg. (3.9).  See subroutine 
qlrps step 23, for the derivation. At this point, the value of q represents ∆h(s). 

 
Line 235:  q=(1.0-0.8*exp(-propa.dlsa/50e3))*prop.dh; 
   

h.  q is then further modified by setting it to be equal to the value of q obtained on 
line 235 in step 5 above, multiplied by 0.78*exp( -pow(q/16.0,0.25).  At this 
point, the value of q represents the standard deviation of the terrain irregularity 
factor at a distance “s”; σh(s). 

 
This step utilizes the formula: 
 
 σh(s) =  0.78 ∆h(s) exp [− (∆h(s) /H)1/4 ]   with H = 16 meters.” [Alg. 3.10] 
 
This formula, is found in the Algorithm, shows the relationship between ∆h and the 
terrain roughness factor σh used in Tech Note 101.  Here it is used to convert the 
value stored in q from the value for ∆h(s) to the value for σh(s). 

 
Line: 236:  q*=0.78*exp(-pow(q/16.0,0.25)); 

 
i. In this step, ITS-67 and “The Algorithm” both describe Afo as a “clutter factor”.    

In ITS-67 the equation is found in the form: 
 

Afo  = 5log10[ 1+h g0hg1fMHzσh(dLs)10-5] dB or 15 dB, whichever is smaller.  
[ITS-67 3.38 



 
   The value of afo, Attenuation From Other, is set to be equal to the lesser of: 

I. 15  dB 
II. (2.171*log(1.0+4.77e-4*prop.hg[0]*prop.hg[1]*prop.wn*q));  

[Alg. 4.10] and [ITS-67 3.38c] 
 
Note: In ITS-67, the log is identified as a common logarithm, i.e. 5*log10.  In the 
ITWOM, the log10 function is used to replace the original substitution of .4343*log 
(.4343ln) for log10. 

 
Where:   

hg[0] is the transmit antenna height above ground in meters; 
hg[1] is the receive antenna height above ground in meters; 

   prop.wn is the wave number, (equal to freq. in MHz/47.7) 
q is currently equal to the value of σh(s), the terrain roughness 
factor at a specified distance “s”,  ( i.e., with distance correction). 

 
So in the ITM we find:  

 
 afo=mymin(15.0,5.0*log10(1.0+4.77e-4*prop.hg[0]*prop.hg[1]*prop.wn*q)); 

 
But this has been removed from the ITWOM.   This empirical formula: 

I. Has no theoretical basis described in Tech Note 101, nor in ITS-67 where 
it first appears. 

II. Utilizes the same inputs used by Shumate’s approximations. 
 On this basis, we suspect that it was an early, empirical derivation that had 
somewhat similar results to Shumate’s clutter loss approximations, and is replaced by 
Shumate’s deterministic-based clutter loss approximations in adiff2.     Therefore, it has 
been removed from consideration in this subroutine. 
 

j. The value of qk is reset to be equal to 1/(absolute value of prop_zgnd).  
 
prop_zgnd is a complex double, representing the earth’s surface transfer impedance  
with two elements;  a real element, the resistance value, and an “imaginary” value, 
the reactance, which describes the phase mismatch between the voltage and the 
current, in terms of a capacitive value (current peak leads voltage peak) or a inductive 
value (current peak lags behind voltage peak).   Note that while the Algorithm notes 
that zgnd is a complex (a +ib) double, the absolute function, used on a complex 
number, is used to create a “real” only value for qk. 

 
 Line 238:  qk=1.0/abs(prop_zgnd);  
 

k.  The value of aht , rounded edge attenuation height functions, is set to be equal to 
20.0 to incorporate the  default approximation value of  20 dB for the function 
C(Ko) in the rounded obstruction attenuation equation. 

 



Line 239: aht=20.0;       [Alg. 6.7] 
 
l. The value of xht is preset to be equal to 0.0.  This argument will later hold the 

sum of the values for x1 and x2.   
 
Line 240: xht=0.0; 
 

m. Here the original alos subroutine’s for loop always calculates both of the two 
F(ht) functions, the height-related rounding functions added to each side of the 
knife edge to approximate a rounded edge.  The math used to implement this 
function will cause an error if it attempts to calculate the receive side rounding 
loss when the receive point is at the peak of the obstruction.  With dl[1] is zero or 
approaches zero, a computes to be zero, wa computes to be zero, and pk reports 
out an absurdly large number, or “inf” when it attempts to divide by wa=0.0; this 
causes the computation of q to fail or report out zero, causing wild results for xht, 
fht and aht.  However, the rounded earth function may still need the results of this 
computation.  So we have split the for loop into two separate runs, in order to sort 
the various results separately to the later functions as needed. 

 
n. First, the coefficients for the rounding function on the transmitter side of the knife 

edge are computed.   
 

a. The value of a is set to be equal to:  
 

  
0.5*(prop.dl[0])2/prop.he[0];     [Alg. 4.15] 

 
where: 

prop.dl[0] is the distance from the transmit site to the horizon 
   prop.he[0] is the effective transmitter height, in meters. 

 
Because subroutine qlrpfl significantly changes the values of the effective heights when 
the path extends into the diffraction range, in other locations we now use prop.rch[] , the 
true radiation center height with respect to mean sea level, instead of prop.he[].   
 
   prop.rch[0] is the transmitter antenna height, RC-AMSL, in meters. 
 
The argument a represents the effective earth’s radii a0,1 for the terrain between the 
antennas and their horizons.  Here, in the initial coefficient-setting run, (d=0), it is set to 
be equal to dl2/2he for each terminal site.  First it represents a0 for dl[0], the transmitter 
site to horizon (or highest obstruction) distance.     
 
Line 245:   a=0.5*(prop.dl[0]*prop.dl[0])/prop.he[0]; 
 

b. The value of wa is set to be equal to (a*prop.wn)1/3 [Alg. 4.16] 
 



Where:    
   prop.wn is the wave number, = (frequency in MHz/47.7)   

Line 246: wa=pow(a*prop.wn,THIRD); 
 

II. The value of pk is set to be equal to qk/wa.  [Alg. 4.17] 
Where:   
 qk was determined in step 8.  

   wa was determined in the last step. 
 
Line 247: pk=qk/wa; 
 

1. The value of q is again reset, this time to be equal to:  
 ((1.607-pk)*151.0*wa*prop.dl[0]/a;   [Alg. 4.18 and 6.2] 

 
Line 248: q=(1.607-pk)*151.0*wa*prop.dl[0]/a; 

 
2. The value of xht is increased by adding the value of q.[Alg. 4.19 –height -

gain] 
 
Line 249: xht+=q; 
 

3. Subroutine fht is called with inputs (q,pk). Subroutine fht then returns fhtv, the 
height-gain over a smooth spherical earth, i.e. a coefficient of the rounding 
loss, for use with the three-radii method.  The value of aht is increased by 
adding the value returned by fht.       [Alg. 4.20] 

 
Line 250:  aht+=fht(q,pk); 
 

o. In the ITWOM, the for loop found in the ITM has been removed; the coefficient 
functions remain; a new if statement is initiated, so that if prop.dl[1] is zero, 
indicating that the receive point is atop an obstruction, or if the grazing angle, 
prop.the[1] of the receive site is greater than 0.2 radians, then xht will be doubled, 
and aht will have the value of fht calculated for the transmitter side doubled.  The 
receive side then is calculated as if it were a mirror image of the transmitter side, 
and a later if statement cuts the resulting attenuation in half. 

 
Line (new):   If ((int(prop.dl[1])==0.0)  || (prop.the[1]>0.2)) 
  { 

 xht+=xht; 
   aht+=(aht-20.0); 
         } 

 
p.  An else statement then provides an alternative path to the if statement above; if 

the receive grazing angle is below 0.2 radians, and the receive site is not atop the 
obstruction, then the receive site coefficients are computed the same way the 
transmitter coefficients were calculated above. 



 
I. The value of a is set to be equal to:  

 
a = (prop.dl[1])2/(2*prop.he[1])     [Alg. 4.15] 

 
   Where: 

prop.dl[1] is the distance from the receive site to the receive 
horizon (obstruction peak).  

prop.he[1] is the effective receiver height, in meters. 
 

In other areas, we find that prop.he[1] is replaced by: 
    prop.rch[1], the receive antenna height RC-AMSL in meters. 
 
For the receive side calculation, a represents the effective earth’s radii for the terrain 
between the receive antenna and its horizon, a1 for dl[1].  
 

II. The value of wa is set to be equal to (a*prop.wn)1/3  [Alg. 4.16] 
 

 Where:   
 a was determined above.  

   prop.wn is the wave number, = (frequency in MHz/47.7) 
 

III. The value of pk is set to be equal to qk/wa.   [Alg. 4.17] 
Where:   
 qk was determined in step 8.  

   wa was determined in the last step, 11(h). 
  

IV.  The value of q, here to represent x1,2, is reset to be equal to:  
    

q =(1.607-pk)*151.0*wa*prop.dl[1]/a;        [Alg. 4.18 and 6.2]  
 

V.  The value of xht, which exists to hold the sum of x1 and x2, is increased by 
adding the value of q.      [Alg. 4.19] 

   
VI.  Subroutine fht is called with inputs (q,pk). Subroutine fht then returns fhtv, 

the height-gain over a smooth spherical earth for use with the three-radii 
method.  The value of aht is increased by adding the value returned by fht. 

  
Line(new): a=0.5*(prop.dl[1]*prop.dl[1])/prop.he[1]; 
  wa=pow(a*prop.wn,THIRD); 
  pk=qk/wa; 
  q=(1.607-pk)*151.0*wa*prop.dl[1]/a; 
  xht=q; 
  aht+=fht(q,pk); 
 
The if or else statement completes. 



 
q.  The initial diffraction constants for a two obstruction, four radii rounded earth 

computation  have been calculated, and the subroutine proceeds to report out 
diffraction attenuation = 0.0, indicating a coefficient setup run has completed.  
The argument adiffv2 is set equal to zero. 
 

Line 253: adiffv2=0.0; 
    } 
 

r.  The if statement on line 225 has a matching else statement on line 256.  
Therefore, if the input value d is not equal to zero, it indicates a second or later 
run is in progress, following the required first run with d=0 to set the coefficients.    

 
Line 256:  else 
  { 

 
s.  th is set to be equal to propa.tha + d*prop.gme;   [Alg. 4.12] 

Where:  
propa.tha, the total bending angle, set in lrprop; in radians (after 

correction).  
  d is the distance at which the attenuation is to be calculated. 

gme is the earth’s effective radius. 
 
Line 258:  th=propa.tha+d*prop.gme; 
 
Here, in the ITM, ds is set to be equal to d − propa.dla; 

Where:  
 d is the distance at which the attenuation is to be calculated. 
 propa.dla is the sum of the two horizon distances, all in meters.  

 
NOTE:  The argument ds is the difference, in meters, between prop.dist, the total path 

distance, and dla, the sum of the horizon distances.  It is calculated twice; 
the first time, it is limited to be a positive number only to avoid calculation 
errors in the geometric distance calculations below.  After the second 
calculation, it equals zero for one obstruction; positive for multiple 
obstructions; negative for line-of-sight.  In the original ITM, the 
calculations that follow produce absurd and non-a-number or infinity 
results if ds = 0.0; this, combined with the use of two other geometrical 
approximations for a that cause failure as the receive point approaches an 
obstacle peak, explains why the original ITM version of this subroutine 
cannot compute diffraction over a single obstacle, only multiple obstacles, 
and not when the receive site is near an obstacle.   The changes for the 
ITWOM include: 

 
Line 259: ds=mymax (d-propa.dla,0.0); 
   



 
38.  Next, the attenuation due to rounded earth for two obstructions is calculated. 

a. a is set to equal ds/th, in meters/radian.   
 

Here, the argument a represents the effective earth’s radii a3,4 for the terrain between the 
two horizons and/or highest visible obstructions from the transmit and receive sites. In 
this main computation run (d >0), a is set to be equal to ds/th to represent a3,4, the 
effective earth’s radii between the obstructions.  The computational difficulty comes in 
where ds =0, which happens when there is only one mutual horizon or obstruction.   If ds 
=0.0, (see above NOTE 2.) this calculation returns “inf”, indicating that it attempted to 
compute infinity, causing failure in both the ar and adiffv2=aknife computations.   This 
problem has been addressed by separating out the computations for a single obstruction, 
for when ds=0, from those for two obstructions.  
 
Line 263:  a=ds/th; 
  

39.  wa is set to be equal to (a*prop.wn)1/3   [ Alg. 4.16] 
 
Line 264:  wa=pow(a*prop.wn,THIRD); 
  

40.  pk is set to equal the value of qk/wa. 
 
Line 265:  pk=qk/wa;         [Alg 4.17] 
 
 
 The computations for adiff2 have been treated differently than in the other heavily 
updated subroutines identified with a 2 after the original subroutine name; here the adiff2 
subroutine has been modified to work better with both the old ITM and new ITWOM 
implementations.   

 
NOTE: In the original implementation of the ITM, here is found one of the biggest 
Achilles heels in the Longley-Rice implementation.  The problem is caused by the 
substitution of a shortcut formula for determining two-ray and diffraction path phase 
difference lengths instead of more rigorously computing the accurate geometrical 
coefficients.  This geometrical math approximation causes the diffraction equations to 
work well only at a distance from an obstruction, contributing to the already extant 
limitation that the diffraction computations were only good for receive look-up angles of 
0.2 radians or less.  This bad approximation is sanctioned in Tech Note 101 starting in 
section 5.  
 
Therefore, the ITWOM uses a more rigorous geometrical computation of the phase path 
length difference v.  Tech Note 101, section 5.2 paragraph 1, states that the equation for 
path length difference between a reflected path and a direct path is:  
 
     ∆r =  r1 + r2  - r0    
 



Where r1 + r2 are the lengths of the two reflected path legs, and r0 is the length of the 
direct path between the transmitter and the receiver.  This is simple, straightforward, and 
correct. 
 
But then in 7.1, where the same equation is used, it states that:  
 

   ∆r =  r1 + r2  - r0   =  θ2d1d2/2d 
 
Where:  θ is th, the total bending angle 

d1 is the ground distance between the transmit site and the peak of the 
knife edge 

 
d2 is the ground distance between the receive site and the peak of the knife 

edge 
d is the total path distance. 

 
The second version, θ2d1d2/2d, saves time in both manual and computer implementation; 
but it is a bad approximation to use. To start with, it assumes that the knife edge is 
approximately half way between the transmitter and receiver, which allows the two take-
off angles to be summed as angle θ, (theta, or th).   This alone means that the 
computation is incorrect when d1 is not approximately equal to d2,  which means as the 
ITM computes a terrain path, when the location of the receive site is just past an 
obstruction, the computation of ∆r has significant error.  This is one of the reasons why 
the E3 or kwx=3 error code is generated in this case; causing a significant error, and 
problem in the implementations, including with the computation of DTV reception in the 
FCC SHIVA and SHIVERA implementations.  
 
The second major problem is that the implementation uses the argument ds to compute 
the d2 in θ2d1d2/2d, in a two knife-edge solution. The argument ds is set to be equal to the 
path distance d less dla, where dla is the sum of the two horizon distances, and represents 
the ground distance between two obstruction peaks: 
 
  ds= d - prop.dla, where dla = prop.dl[0] + prop.dl[1]    
 
But when there is only one obstruction, dla is equal to d.  The argument ds then computes 
to be equal to zero, and the ∆r argument, and subsequent v2 argument, computes to be 
infinity, which the program reports as “inf”, and fails.   Where the receive horizon 
distance is short, i.e. when the receiver is near the obstruction peak, ds approaches 
infinity, causing the computation to overload with a too-big impossible result, forcing a 
“nan” output. 
 
Therefore, the ITM implementation cannot compute the diffraction for a single 
obstruction, or near an obstruction.  The same problem occurs in the computation of the 
rounded edge.  The subroutine adiff then fails to compute for a single obstruction, 
reporting out “inf” for a single obstruction, and “nan”, or not-a-number, for receiver 
horizon distances near an obstruction. 



 
In adiff2, the computations have had this approximation excised; the distances r1, r2, and 
r0   are computed using straightforward plane geometry and trigonometry. 
 

41. In the  ITWOM, it is necessary to compute the single knife edge geometrical 
coefficients.  The first to determine is the obstruction height above a line 
between the transmitter antenna and the receiver antenna for a single obstacle.   
This working height is determined by taking the height AMSL of a point 
where a direct line between the transmitter and receiver antennas crosses the 
single obstacle centerline, at distance dl[0], and subtracting this height from 
the obstruction height, prop.hht, to obtain the correct effective obstruction 
heights, toh, and roh, for the v computation.  Similar computations are 
required for the two-obstruction calculations.   The term [(prop.rch[0]-
prop.dl[0]*((prop.rch[0]-prop.rch[1])/prop.dist)] is a statement of a straight 
line formula of the form y= a + mx, solved for a height at the obstruction 
location, where the transmitter height he[0] is the zero-crossing constant a, the 
term (prop.rch[1]-prop.rch[0])/propa.dist) is the slope m, and prop.dl[0] is the 
distance x.  

 
For two obstructions, each obstruction will have its attenuation computed as if it were a 
stand-along obstruction, with the receiver obstruction first treated as a receive site for a 
single obstacle loss calculation, and then the first obstacle treated as a secondary 
transmitting site for a second “single obstacle” calculation.  The two losses are then 
added together.  The geometrical distances from the transmitter antenna to the second 
obstruction peak, dtro, and from the first obstruction peak to the receiver, drto, must be 
calculated, as well as toho, the transmitter obstruction height above a line from the 
transmitter to the second obstruction peak, and roho, the receive obstruction height above 
a line from the first obstruction peak to the receiver.  
 
An approximation is used, in that the obstruction heights above the lines are computed 
for vertical lines between the obstruction peak and the direct line, not lines perpendicular 
to the direct line.  This can be addressed later, in the fine-tuning of the ITWOM for 
databases with intervals smaller than 3-arc-seconds.   In most cases, the grazing angles 
involved will be less than 3 degrees, and the resulting error is insignificant. 
 

42. In the ITWOM, toh, toho, roh, roho, dto, dto1, dro, dro2, dtro, drto, dtr, dhh, 
dhh1, dhh2, and dhec are declared as static double. 

 
43. The argument toh, the height of the transmitter horizon obstruction above a 

relatively horizontal line drawn from the transmitter antenna to the receive 
antenna is determined.  It is computed using simple geometry and a straight 
line formula (this is an approximation; a higher precision computation would 
use a line perpendicular to the direct line): 

  
Prop.rch[1]-prop.rch[0]/prop.dist is the difference between the receive site rc-
amsl and transmitter site rc-amsl, divided by the distance between them.  It is 



the slope of the direct line between the transmitter and receiver in a flat-earth 
scenario.  Multiplying this slope by the distance between the transmitter to the 
obstacle, prop.dl[0], and adding to it the transmit antenna RC-AMSL height, 
gives us the height on the obstacle’s vertical centerline, at which a line from 
the transmit antenna to the receive antenna would cross.  This is then 
subtracted from the obstacle height AMSL to obtain toh, the height of the 
obstacle between a direct line from the transmitter antenna to the receive 
antenna, over flat earth.  This would apply to either a single-obstacle or two-
obstacle scenario. 

 
 
Line(new): toh= prop.hht-(prop.rch[0]-prop.dl[0]*((prop.rch[1]-prop.rch[0])/prop.dist)) 
   

44. Then compute roh, the receive obstruction height above a direct line between 
the transmitter and the receiver for a two-obstacle scenario, in a similar 
manner.  

 
Line(new): roh= prop.hhr-(prop.rch[0]-(prop.dist-prop.dl[1])*(prop.rch[1]-
prop.rch[0])/prop.dist)); 

  
45. Then compute toho, the transmitter obstruction height above a line between 

the transmitter and the receive obstruction peak.  
 
Line(new): toho= prop.hht-(prop.rch[0]-(prop.dl[0]+ds)*((prop.hhr-
prop.rch[0])/(prop.dist-prop.dl[1]))) 
   

46. Then compute roho, the receive obstruction height above a direct line between 
the transmitter obstruction and the receiver. 

  
Line(new): roho= prop.hhr-(prop.hht-ds*(prop.hhr-prop.rch[0])/(prop.dist-prop.dl[0]))); 
 

47. Now calculate dto, the path distance from the transmitter to the transmitter 
obstruction peak for a single obstacle, dto1, the path distance from the 
transmitter to the transmitter obstruction peak for the first of two obstacles, 
dtro, the path distance from the transmitter to the receiver obstruction peak, 
drto, the path distance from the receiver to the transmitter obstruction peak, 
dro, the path distance from the receiver to the receiver obstruction peak for a 
single obstacle, and dro2, the path distance from the receiver to the receiver 
obstruction peak for the second of two obstacles, using basic geometry: 

 
Line(new): dto=sqrt(prop.dl[0]*prop.dl[0]+toh*toh); 
Line(new): dto1=sqrt(prop.dl[0]*prop.dl[0]+toho*toho); 
Line(new): dtro=sqrt((prop.dl[0]+ds)*(prop.dl[0]+ds)+prop.hhr*prop.hhr); 
Line(new): drto=sqrt((prop.dl[1]+ds)*(prop.dl[1]+ds)+prop.hht*prop.hht); 
Line(new): dro=sqrt(prop.dl[1]*prop.dl[1]+roh*roh); 
Line(new): dro2=sqrt(prop.dl[1]*prop.dl[1]+roho*roho); 



 
Note that the height difference, as well as the ground path distance, between the points, is 
considered in the above calculations.    
 

48. Next we determine the distances for the same paths, less the foliage height 
prop.cch, atop the obstructions.  

 
 
Line(new): dtof=sqrt(prop.dl[0]*prop.dl[0]+(toh-prop.cch)*(toh-prop.cch)); 
Line(new): dto1f=sqrt(prop.dl[0]*prop.dl[0]+(toho-prop.cch)*(toho-prop.cch)); 
Line(new): drof=sqrt(prop.dl[1]*prop.dl[1]+(roh-prop.cch)*(roh-prop.cch)); 
Line(new): dro2f=sqrt(prop.dl[1]*prop.dl[1]+roho-prop.cch*roho-prop.cch)); 
 
 

49. For each of these distances, a second line is then added that adds the 
additional distance between the points occurring due to the effective curvature 
of the earth by adding prop.gme*(related ground distance).   An additional 
fine tuning improvement in the professional version will add compensation for 
the average height (AMSL) of the two points, by adding the average height 
AMSL of the two points to prop.gme, before multiplying by the related 
ground distance. 

 
50. Calculate the distance of the line from the transmitter antenna to the receive 

antenna, taking into consideration the height difference between the 
transmitter and the receiver:  

 
Line(new): dtr=sqrt(prop.dist*prop.dist+(prop.rch[0]-prop.rch[1])*(prop.rch[0]-
prop.rch[1])); 

 
51. Calculate the actual path distance, for two scenarios, between the obstruction 

peaks.  This has to reference against (1) for dhh1, the vertical height of the 1st 
obstacle with reference to a line between the transmit antenna and the 2nd 
obstacle peak, and then (2) for dhh2, against the vertical height of the 2nd 
obstacle with reference to a line between the 1st obstacle peak and the receive 
antenna.   This is a Pythagorean triangle calculation, x = (y2 +z2) 0.5 where x 
represents the actual path distance, y is the ground path distance between the 
obstacles, and z is the height difference between the two obstacles.  The 
ground path distance is the total path length, prop.dist, less the sum of the 
transmit and receive horizon distances, prop.dla.    These are used for the 
knife edge computations in the ITWOM.   

 
52. Calculate the actual path distance from the 1st obstruction peak to the 2nd 

obstacle peak, dhh1, using the horizontal path distance from the 1st obstruction 
peak to the 2nd obstacle peak, (the total path distance, prop.dist, less the sum 
of the horizon distances, prop.dla), and the height difference between the 1st 
obstruction peak and a line between the transmitter and the 2nd obstruction 



peak.   Toho is the height of the transmit horizon obstruction above a line 
between the transmit antenna and the 2nd obstacle peak line.  Use for 
calculating knife-edge diffraction over a transmitter horizon obstacle or 
single-obstruction scenario. 

  
53. Calculate the actual path distance from the 1st obstacle peak to the 2nd obstacle 

peak, dhh2, using the horizontal path distance from the 1st obstruction peak to 
the 2nd obstacle peak, and the height difference between the 2nd obstruction 
peak and a line between the 1st obstruction peak and the receive antenna.  
Roho is the height of the receive horizon obstruction above a line between the 
1st obstruction to the receive antenna.  Use for calculating knife-edge 
diffraction over a receive horizon obstacle. 

 
Line(new): dhh1=sqrt((prop.dist-propa.dla)*(prop.dist-propa.dla)+toho*toho); 
Line(new): dhh2=sqrt((prop.dist-propa.dla)*(prop.dist-propa.dla)+roho*roho); 
 

54. Here, ds is reset to be equal to d − propa.dla; 
Where:  
 d is the distance at which the attenuation is to be calculated. 
 propa.dla is the sum of the two horizon distances, all in meters.  

 
NOTE:  The argument ds is the difference, in meters, between prop.dist, the total path 

distance, and dla, the sum of the horizon distances.  It is calculated twice; 
the first time, it is limited to be a positive number only to avoid calculation 
errors in the geometric distance calculations below.  Here, after the second 
calculation, it equals zero for one obstruction; positive for multiple 
obstructions; negative for line-of-sight.  In the original ITM, the 
calculations that follow produce absurd and non-a-number or infinity 
results if ds = 0.0; this, combined with the use of two other geometrical 
approximations for a that cause failure as the receive point approaches an 
obstacle peak, explains why the original ITM version of this subroutine 
cannot compute diffraction over a single obstacle, only multiple obstacles, 
and not when the receive site is near an obstacle.    

 
Line 259: ds=d-propa.dla; 
 
 
Now we have the coefficients to compute v accurately, even near obstructions.   

  
55. Coefficients are then set up for use in subroutine saalos, to calculate clutter 

loss past the peak of the receive horizon obstacle peak: 
a. prop.tgh, the transmitter ground height,  is set to prop.cch +1.0 meter; so 

subroutine saalos can treat the signal diffracting over the knife edge peak 
as if it is an effective secondary transmitter site atop the obstacle with 
respect to the receiver.  This is done by adding a height 1 meter above the 
clutter canopy height. 



b. The argument taag is set to be equal to the height of the secondary 
transmitter site, the receive horizon obstacle peak height, prop.hhr, which 
for a single obstacle will also be the same as the transmitter horizon 
obstacle peak height. 

c.   distance rd, here to be the distance from the mutual horizon obstacle 
peak to the receive antenna, is set to be equal to the receiver horizon 
distance, prop.dl[1]. 

 
Line (new)   prop.tgh=prop.cch+1.0; 
   prop.taag=hht; 
   rd=prop.dl[1]; 
 
The next steps implement the new ITWOM obstacle computations, starting with two 
peak scenarios, and with a corrected, true point-to-point version of the original Vogler 
two-obstacle computations as modified to an Epstein-Peterson methodology for the ITM.  
These are followed by the new ITWOM calculations for areas where the receive site 
grazing angle is greater than 0.2 radians, and then for single obstacle scenarios. 
 

56. The argument ds can now be used to tell the difference between one and more 
obstructions, by using the integer value, the value rounded down to the nearest 
integer value, of ds.  If the integer value of ds, the difference between the path 
distance and the sum of the two horizon distances, is zero, one obstruction has 
been found.  If ds is greater than zero, two obstructions have been identified.  
An if statement is implemented to select for the case when two obstructions 
have been found. 

   
 
Line (new):   If ((int(ds)>0.0) 
  {  
  

57.  A second, embedded if function is initiated to select for the case where the 
receive site is at least one interval past the peak of the second obstacle.  If the 
receive antenna to receive horizon obstacle path is greater than zero, then:   

 
Line (new)        If(int(prop.dl[1])>0.0) 

 { 
 

58. In the ITM, for two obstacles, q, a utility variable, is reset to be equal to:  
 

q = (1.607-pk) * 151.0 * wa * th + xht       [Alg. 4.18 and 6.2] 
 

and represents the  distances x3 and x4 found in [ITS-67 3.37].  The distances x3 
and x4 are defined in ITS-67 as: 

 
 x3 = (B3(a3)-2/3(ds)/1000)+x1+x2 km , where ds is in meters.   [ITS-67 3.31a] 
 



 x4 = (B4(a4)-2/3(ds)/1000)+x1+x2 km , where ds is in meters.   [ITS-67 3.31b] 
 

where: 
 
 x3 = (B1(a1)-2/3(dl[0] /1000)  km, where dl[0] is in meters.  [ITS-67 3.30] 
 
 x4 = (B2(a2)-2/3(dl[0] /1000)  km, where dl[0] is in meters.   [ITS-67 3.30] 
 

and B1, 2, 3, 4  is defined as:  416.4f1/3[1.607 - K h,v(a1, 2, 3, 4)].   [ITS-67 3.32] 
 

and the parameters K h(a) (K horizontal for a) and K v(a) (K vertical for a)  are 
defined as:  

 
K h(a) = 0.36278(a*f)-1/3[ε –1]2 + x 2 ]-1/4  [ITS-67 3.33a] 
 

Or using wn instead of f:  K h,(a) = 0.100032(a*wn)-1/3[ε –1]2 + x 2 ]-1/4

 
K v(a) = K h,(a)[ε2 + x 2 ]1/2    [ITS-67 3.33b] 

 
Where this x is defined by [ITS-67 3.9a] as x=377.36 σ/wn,  (18,000 σ /f) and the 
ground constants σ and ε are provided in the input.  The computer implementation 
uses σ and ε to compute the complex ground impedance, zgnd, which is used here 
instead of σ and ε. 

 
So we can see that wa represents the (a*wn)1/3 component, and that a combined 
Kh,v(a) is represented by pk. 

 
Line zzz:  q=(1.607-pk)*151.0*wa*th+xht; 
 
 

59.  ar is the rounded earth attenuation, Ar, calculated as equal to:  
    0.05751 * q – 4.343 * log(q) – aht     [Alg. 4.20, 4.23,4.24, and 4.25] 
 
which can be better stated using the specified log10, as: 

Ar = 0.05751*q – 10*log10(q) – aht  
 

In the Algorithm, the author, George Hufford, stated that the calculation for A r, 
the rounded edge attenuation, consisted of adding up four functions: 
 
 Ar = G(x0) – F(x1, K1) – F(x2, K2) – C(K0)   [Alg. 4.20] 
 
And that these four consisted of: 
 
 G(x) = 20log(x-1/2ex/A)      [Alg. 4.23]  
 
where A is a dimensionless constant equal to 151.03; 



 
F(x, K) = 20log|(π/(21/3AB))1/2Wi(to – (x/(21/3AB))2 )| [Alg. 4.24] 
 

and: 
C(K) = 20log|1/2(π/(21/3AB))1/2(22/3K2t0

  - 1)Wi’(t0)2| [Alg. 4.25] 
  

Which at first glance, does not seem to match up with the formula in the c++ 
code.  It also does not make it clear whether the log functions are natural or 
common, nor does it state the units.  But wait!  There’s more.   If we look at ITS-
67, we find that the formula for the G(x) function is: 
 

G(x3,4) = 0.05751 x3,4 – 10log10 x3,4     dB       [ITS-67 3.37]  
 
Aha! This looks more familiar!  It states the units, in dB!  And it clearly states the 
log function is log10, a common logarithm!  And to those experience with knife-
edge computations, it can be seen to be a modified knife-edge approximation 
equation. 
 
 To compare the two, it helps to know logarithm math.  When working in 
logarithms, a multiplied function can be split into two, added, functions.  So 
Hufford’s  G(x) = 20log(x-1/2ex/A)  becomes G(x) = 20log10(x-1/2) 
+20log10(ex/A).  The –1/2 power can cross over the common logarithm term, so 
20log10(x-1/2) converts to –(20/2)log10(x), or, simply,  –10log10(x).  A natural 
logarithm result can be converted to a common logarithm result by multiplying 
the natural logarithm result by .4343, so 20log10(ex/A) converts to 
(20*.4343)ln(ex/A).  An ln function is the inverse of an e function, so they cancel 
out, leaving (20*.4343)(x/A).   A=151.03, so the result is: .4343(20x/151.03) = 
0.05751x. So despite George’s obfuscation and missing details, we see that: 

 
 G(x)  =  20log(x-1/2ex/A)   =   0.05751(x) –10log10(x)              [Alg. 4.23]  
 

And it is obvious that q in the code here represents x1,2 in the formulas.   Which 
except for the argument aht, is most of the formula used in the ITM.   ITS-67 
states that x is defined by [ITS 3.9a] to be x =18000σ/f, where the frequency f is 
in MHz and the ground constant σ for average ground is 0.005 mho/m. (Table 2, 
p.8, ITS-67]. 
 
Next, we check aht.  Either only a part of the full equation is used, or aht is tasked 
with providing all of the result of – F(x1, K1) – F(x2, K2) – C(K0).  The argument 
aht was calculated during the first coefficient calculation run, where (d==0); it 
was first set to be equal to 20. The ITS-67 equivalent formula to [Alg. 4.20] is: 
 
 Ar3,4 = G(x3,4) – F(x1) – F(x2) – 20  dB   [ITS-67  3.28] 
   



And therefore replaces C(K0) outright with 20.  The Algorithm notes that “for 
those values of K in which we are interested it is a good approximation to say 
C1(K) = 20 dB.”  So C(K0) is represented in aht, when aht is preset to 20.0.   
 
As to F(x1) and F(x2), they are computed in two calls to subroutine fht with inputs 
(q, pk), also during the first coefficient setup run, and the two results are summed 
with the 20.0 C(K0) value preset in aht.  So aht does contain the results of both F 
functions, and the C function.    Also note that if the receive site look up angle is 
greater than 0.2 radians, the two peak calculation is treated as a knife-edge 
diffraction over two peaks, with attenuation on the receive side of an obstruction 
is then determined with Radiative Transfer Function approximations using the 
saalos subroutine. 

 
Line 267:  ar=0.05751*q-10*log10(q)-aht; 

  
  

60.  Next, the process of calculating wd, the weighting factor, wd, for knife edge 
vs rounded edge, is completed using wd1 and xd1. 

 
b.  q is reset to be equal to:  

 
(wd1+xd1/d)*mymin(((1.0-0.8*exp(-d/50e3))*prop.dh*prop.wn),6283.2) 

                [Alg. 4.9]  
   
Line 268:  q=(wd1+xd1/d)*mymin(((1.0-0.8*exp(-d/50e3))*prop.dh*prop.wn),6283.2); 
 
   

61.  wd, the edge weighting factor, is set to be equal to:  
 (25.1/(25.1+sqrt(q)))          [Alg. 4.9] 

 
Line 269:  wd=25.1/(25.1+sqrt(q)); 
  
In the original implementation of the ITM, only a two-obstacle scenario is considered.  
From ITS-67, section 3.2, “ In this application the knife-edge attenuation is computed as 
though the radio path crossed two sharp, isolated ridges.”  So in the ITM: 
 

62.  q is reset to be equal to 0.0795775*prop.wn*ds*th*th; At this point, the value 
of q is a partial term that represents most of v2, the internal wedge angle of a 
knife edge diffraction calculation.  

 
To show this calculation, in ITS-67, we find v1,3 specified in 3.26a  (with notation 
changed for c++ for clarity) as: 
 
 v1,3 = 1.2915*θ3*(fMHz* dl[0]*(ds)/(d - dl[1]))1/2   [ITS-67 3.26a-d] 
 
The frequency is stated in megahertz, and the distances in kilometers. 



 
First we substitute to use the wave number, 47.71*wn= fMHz :   
 
 v1,3 = 1.2915*θ3*(47.7*prop.wn* dl[0]*(ds)/(d - dl[1]))1/2    
 
Squaring both sides of the equation, we get: 
 
v2

1,3 = 1.2915*1.2915*47.7*th*th*prop.wn*prop.dl[0,1]*ds /(prop.dist-prop.dl[1,0]);  
 
v2

1,3 = 79.5775*prop.wn*th*th*ds*prop.dl[0,1]/(prop.dist-prop.dl[1,0]);    
 
In the original equations, ∆r and λ are in kilometers, as noted in TN101 7.1.  To 
accommodate data entered in meters instead of kilometers, the constant is divided by 
1000, resulting in: 
 
v2

1,3 = 0.0795775*prop.wn*th*th*ds*prop.dl[0,1]/(prop.dist-prop.dl[1,0]);    
  
So q represents most of v2.  The rest was added in the next step, in the input calls to 
aknfe, and the ITM reset the value of the utility variable q to be:  
 

q=0.0795775*prop.wn*th*th*ds.    
 
 
NOTE: Here we find a discrepancy.  On this issue the Tech Note 101 methodology 
and the ITS-67 methodology and FORTRAN source code are in agreement.  The 
original ITS-67 methodology, a four calculation (two calculations per obstruction) 
method, was changed and simplified for the ITM to be a two calculation 
methodology, but an error occurred that remains in the ITM code.  The 
documentation in “The Algorithm” appears to be written as if George Hufford was 
aware of the discrepancy, and was avoiding any mention of it. 
  
In the ITM FORTRAN source code in the Guide, and in the ITMDLL.cpp source code, 
we find q.  The utility argument q at that point in the code represents v2 with distances 
and heights in meters, and wn=fMHz/47.7. The argument q is set to be equal to: 
 
  Q= 0.0795775*WN*DS*TH**2  
 
in FORTRAN, and in the ITMDLL.cpp: 
 
  Q= 0.0795775*prop.wn*ds*pow(th,2.0); 
 
The question is about the derivation of the constant 0.0795775.  To derive the correct 
constant, we start with: 
    v = + 2*(∆r/λ)1/2    [TN101  7.1a] 
 
Where ∆r and λ are in kilometers.  



Using the approximation stated on page 7-1 of TN 101 of: 
 
    ∆r =  θ2∗d1*d2/2d 
 
Then:  v = + 2*(∆r/λ)1/2   =    + 2*((θ2∗d1*d2/2d)*1/λ)1/2     
 
The wavelength, λ, in meters, is equal to speed of light in free space, C, or 2.799792e10 
meters/sec, divided by the frequency, f in hertz, or fHz: 
 

λ = C/fHz = 2.799792e10/fHz 
 

The inverse of λ is: = fHz/2.799792e10 =  fMHz/2.799792e2,  =  fMHz/279.9792 in meters. 
  
Or: 1/λ = fHz/C = fMHz/.2799792, in units of 1/kilometer, which can be approximated as:  
 

1/λ = fMHz/.3 in units of 1/km. 
 
In terms of frequency in MHz and distances d1, d2 and d in kilometers, v can be 
approximated as:  
 

v= + 2*((θ2∗d1*d2/2d)*1/λ)1/2  = v = + 2*((θ2*d1*d2/2d)(f/.3))1/2  

 
v = + 2.583*θ*(f*d1*d2/d)1/2 [TN101  7.1b] 

 
Note that the 1/(2*.3) has been removed from the denominator inside the square root term 
brackets and included in the 2.583 constant, as 2.583 = 2*(1/.6)1/2.  
 
Converting to the use of wn, where frequency in MHz = wn*47.7, it is restated as:  
 

v = + 2.583*θ*(47.7*wn*d1*d2/d)1/2   
 

And converting from the use of distances in kilometers to distances in meters: 
 

v = + 2.583*θ*(47.7*wn*d1*d2 *1000*1000/1000*d)1/2  
 

v =  + 2.583*(47.7/1000)1/2*θ*(wn*d1*d2/d)1/2  
 

v =   + 2.583*(47.7/1000)1/2*θ*(wn*d1*d2/d)1/2  
 

v =   + .564136*θ*(wn*d1*d2/d)1/2  
 
The square of v, represented by q as should be used in the ITM, is then: 
 

q = v2 = + .3182491*θ2*wn*d1*d2/d             (xxx) 
 



 
But in the ITM, we find 0.0795775 instead of 0.3182491.  0.0795775 is one-fourth of 
0.3182491, but since v is squared, it would have only an effect of the square root of 4, or 
a factor of 2, reducing the correct value of v by one-half.  As a result, it would appear that 
ITM computations do not provide full value for knife edge attenuation, by a factor of 
log10(2), or 0.3 of the correct value added to 12.953. 
 
To solve the mystery, note that in the derivation from the ITS-67 source code and 
methodology stated above at step 29, we obtained a value for v of: 
 
 v1,3 = 1.2915*θ3*(fMHz* dl[0]*(ds)/(d - dl[1]))1/2   [ITS-67 3.26a-d] 
 
And note that the constant is 1.2915 instead of 2.583.  1.2915 is half of 2.583.  In ITS-67 
section 3-2, we find that the loss for each obstacle is calculated in two sections, creating a 
total of four loss values, two for each obstacle, that are added together to get the total 
diffraction attenuation over the two obstacles.   Since each obstacle is calculated twice, 
the average of the two values for each obstacle is obtained by dividing each calculation 
by 2.  So 1.2915 replaces 2.583 in [ITS-67 3.26a-d], and each of the four calculations 
provides half of the diffraction attenuation value for one of the two obstacles.    
 
In the ITM, however, the calculation methodology is changed so that there are only two 
calculations, a single call to aknfe for each obstacle.   This changes Vogler’s original 
ITS-67 knife-edge methodology to be equal to the Epstein-Peterson methodology, for use 
in the ITM.   When the modification occurred between the ITS-67 implementation (1968) 
and the ITM (early 1980’s), the modifier forgot to change the constant 1.2915, used for 
two calculations per obstruction, to 2.583 for a single calculation per obstruction. 
 
As verification, going back to the Fresnel-Kirchhoff theory on which Vogler’s 
methodology is based, note that the square of v, i.e. argument v2, is equal to 4*∆r/λ, 
as evident from [TN101 7.1].   Converting this equation to use the wave number 
instead of the wavelength, where the wave number, wn, for an electric field is: wn = 
2π/λ, so  1/λ = wn/2π;  
 

v2 = 4*∆r/λ =  ∆r(4/λ) = ∆r(4*wn/2π) = ∆r(2wn/π) = ∆r(0.6365∗wn) 
  
The argument q, as shown above, then represents the partial 4/λ term of v2, and for 
use in the ITM, q should be equal to: 0.6365*prop.wn*(1/2) = 0.31825*prop.wn for a 
single diffraction edge calculation per obstruction, after including the ½ constant 
from the angle approximation calculation of ∆r.   
 
Note that while in the ITM the value of ds/2 is included in q, in the ITWOM, the full value 
of ∆r is included in the following call to aknfe, so in the ITWOM, where the ∆r 
calculation has been changed to a more rigorous and accurate Pythagorean geometric 
calculation, q will be equal to: 0.6365*prop.wn. 
 
Line (changed):  q=0.6365*prop.wn; 



 
 

63.  A tertiary embedded if statement is initiated; for the path from the second 
obstruction to the receive site, if the receive site grazing angle prop.the[1] 
(a.k.a. look-up angle) is greater than 0.2 radians, then a full two obstacle 
scenario using the ITM methodology, corrected and modified for true point-
to-point calculation (eliminating the averaging line system), is calculated:  

 
Line (new)   If(prop.the[1]>0.2) 
   { 

  
64. Subroutine aknfe is called twice to calculate the diffraction loss due to a 

knife-edge at two separate peaks.  In the ITM, the first time with input: 
(q*prop.dl[0]/(ds+prop.dl[0])), and the second time with input: 
(q*prop.dl[1]/(ds+prop.dl[1])).  

 
Note that the additions in the input complete the inputs to aknfe to 
represent v1

2 and v3
2.   In each case, aknfe reports out a, the attenuation 

due to a single knife edge diffraction; the Fresnel integral (in decibels) as a 
function of the input, v2.  
Adiffv2 is then temporarily set to equal the sum of the two outputs from 
aknfe, the knife edge diffraction from two knife edges. [Alg. 4.14] 

  
  In the ITM, this was accomplished using: 
 

adiffv=aknfe(q*prop.dl[0]/(ds+prop.dl[0]))+aknfe(q*prop.dl[1]/(ds+prop.dl[1])); 
 
But now we use: 
 
65. The original ITM methodology for two obstructions, modified to remove the 

averaging line system and calculated using the actual transmitter and receiver 
horizon obstacle peaks, is invoked:  

 
a. Subroutine aknfe is called twice to calculate the diffraction loss due to a 

knife- edge peak on two separate obstacles, using a simplified version of 
the Vogler multiple-knife-edge methodology.  The first call calculates the 
diffraction loss over the transmitter obstruction, using a path from the 
transmitter to the 2nd obstruction peak.  The second call calculates the 
diffraction loss over the receive obstruction, using a path from the 
transmitter obstruction peak to the receiver; 

 
a. the first time with input: (2+q*abs(dto1+dhh1-dtro)),  
b. and the second time with input: (2+q*abs(dro2+dhh2-drto));  

 
Note that the additions in the input complete the inputs to aknfe to 
represent v1

2 and v3
2.   In each case, aknfe reports out the attenuation due 



to a single knife edge diffraction; the Fresnel integral (in decibels) as a 
function of the input, v2.  
Adiffv2 is then temporarily set to equal the sum of the two outputs from 
aknfe, the knife edge diffraction from two knife edges. [Alg. 4.14] 

  
Line 262:     else 
         {   

adiffv2=aknfe(2+q*abs(dto1+dhh1-dtro)) +aknfe(2+q*abs(dro2+dhh2-
drto)); 

 
66. The calculation for adiffv2 , here representing the total diffraction attenuation, 

is then completed; by being set to be equal to:  
ar * wd + (1.0-wd) * adiffv2      [Alg. 4.11] with afo removed. 

where; 
adiffv2, on the right side of the = sign, holds the value of the knife edge 
attenuation. 
ar is the rounded earth attenuation 

 
 
Line 270: adiffv2=ar*wd+(1.0-wd)*adiffv2; 
                 } 
 
From this full-length two-obstacle diffraction calculation scenario, we then work back 
toward the transmitter site, with the other diffraction calculation scenarios. 
 
The next scenario considered is when there are two obstructions, but the receive site 
grazing angle, the look-up angle from the receiver to the receive site horizon obstacle (the 
tallest obstacle “visible” from the receive site, exceeds the theoretical limit of 0.2 radians 
stated in Tech Note 101, and which is programmed in the ITM to cause a kwx=3, a.k.a. 
EC3, level alarm, indicating that the value calculated cannot be trusted to be correct.  Put 
another way, when the receive site is in the obstacle’s “shadow area”, too close to the 
obstacle for Fresnel-Kirchhof knife-edge theory to work correctly. 
 

67.  An else statement follows; if the receive site is too close to an obstruction, i.e. 
if the receive site grazing angle is equal to or greater than 0.2 radians, then:   

 
68.  Subroutine aknfe is called once to calculate the diffraction loss due to a 

knife-edge peak at the transmitter horizon that is followed by a separate 
receive site obstruction.  The call calculates the diffraction loss over the 
transmitter obstruction, using a path from the transmitter to the 2nd obstruction 
peak (the receive site), with input: (q*abs(dto1+dhh1-dtro)).  

 
Note that the additions in the input, within the absolute value statement, calculate 
∆r, the path length difference between the diffracted and a theoretical direct ray, 
and therefore allows the input to aknfe to represent v1

2.   Subroutine aknfe reports 
out the attenuation due to a single knife edge diffraction; the Fresnel integral (in 



decibels) as a function of the input, v2.  Adiffv2 then temporarily represents the 
sum of the output from aknfe for the transmitter horizon obstacle. [Alg. 4.14 
modified] 

  
Line 262:  adiffv2=aknfe(q*abs(dto1+dhh1-dtro)); 
  

69.  A fourth-level embedded if statement is initiated, so that if the receive site 
grazing angle is greater than 0.6 radians, (34.4 degrees) then the value of 
prop.tgh is reset to be equal to prop.cch-1.0.  This allows saalos to treat the 
diffracted signal at the second peak as if it were a radiating from a secondary 
transmitting antenna at the clutter canopy height (set to 1 meter below) with 
the signal passing through the clutter on the side of the obstacle on its way 
down the side of the obstacle to the receiver. 

 
Line     :   if(prop.the[1]>0.6) 
  { 
   prop.tgh =prop.cch-1.0; 
   } 
   

70. An else statement follows the above if statement, so if the receive site grazing 
angle is between 0.2 and 0.6 radians, (11.5 to 34.4 degrees) then the 
transmitter ground height, prop.tgh is set to be equal to: the clutter height, 
prop.cch, plus the height of the receive horizon obstacle above mean sea level, 
prop.hhr, less the effective height of the receive antenna, plus the actual height 
of the ground at the receive site.  This will allow subroutine saalos to treat the 
signal diffracted over the 2nd obstacle as a secondary transmit site, 
transmitting a signal from above the clutter canopy line through what starts as 
a clear air path toward a receive antenna in the valley below, a secondary line-
of-sight clutter loss calculation. 

 
Line:  (new): else 
  { 
   prop.tgh=prop.cch+1.0; 
  } 
  

71.  A following fourth-level embedded if statement is initiated; if the receive site 
grazing angle is less than 1.22 radians (69 degrees), distance rd is set to be 
equal to the receiver horizon distance.  If the receiver antenna is at or below 
the clutter canopy, subroutine saalos is called with inputs (rd,prop, propa);  to 
calculate the clutter loss.  The output attenuation of saalos is added to adiffv2, 
which already holds the weighted diffraction attenuation to and including the 
2nd obstruction peak.  If the receive antenna is above the clutter canopy, 
standard knife edge diffraction loss is applied. 

72. An else statement follows; if the receive site grazing angle exceeds 1.22 
radians, the receive site is assumed to be deeply shadowed; directly behind a 



tall building or steep cliff, and an empirically derived 20 dB of attenuation is 
assigned.  

 
Line (new): if(prop.the[1]<1.22) 

 { 
    rd=prop.dl[1];  
    if(prop.hg[1]<=prop.cch) 
    {    
     adiffv2+=saalos(rd, prop, propa); 
    } 
    else 
    { 

q=0.6365*prop.wn; 
adiffv2=aknfe(q*abs(dto1+dhh1-dtro)) 

+aknfe(q*abs(dro2+dhh2-drto)); 
    } 
   } 
   else 
   { 
    adiffv2+=20.0; 
   } 
      }  

         } 
     } 
 
The case of the receive site being on the peak of the second, receive horizon obstruction, 
is considered as a single obstacle computation ending at a receive site on a diffracted 
peak. 
 

73. An else statement follows; so when there are more than 2 obstacles, and if the 
receive path length is not greater than zero, then the receive site is atop the 2nd 
obstacle. 

 
74. The value of q is reset to be equal to the value of v2, the Fresnel diffraction 

internal wedge angle, for a single knife edge: = 0.6365*prop.wn∗abs(dto+dro-
dtr); 

 
Line(new):        q=0.6365*prop.wn∗abs(dto+dro-dtr); 

   
75. By working definition, if only one terrain point (for a database with 3 arc 

second or smaller terrain detail) is both the highest obstacle “visible” from the 
transmitter site and the receive site, then it is a knife-edge, equal to or less 
than one terrain database interval wide.   If the transmit and receive terminal 
horizon obstacle peak terrain points have the same value, and are separated by 
as little as one terrain interval, then ds>0.0 and the two points are treated as 
separate obstacles, and the two-obstacle knife-edge vs. rounding calculation is 



applied.  So for this and the following single-obstacle scenarios, the first 
obstruction is considered to be a knife-edge obstruction, simplifying the 
calculation to consider only knife-edge attenuation for the first obstruction.  

 
76. adiffv2 is set to equal the attenuation from knife edge diffraction from a single 

obstacle peak to a receive site atop a 2nd obstacle peak.  A call to aknfe with 
input q, computes the diffraction attenuation for the first obstacle.  To this is 
added 5.8 dB of knife-edge peak diffraction attenuation for the 2nd obstacle, 
where v=0, taken from Figure 7.1, Tech Note 101, for a receive site atop a 
peak. 

 
Line(new): adiffv2=aknfe(q)+5.8; 
                 } 
 
At this point, the calculation of diffraction over two obstacles, if two horizon obstacles 
were found in the path, has been completed.  A new method involving clutter losses is 
used for when the receive grazing angle is greater than 0.2 radians, and a non-averaged 
direct modification of the original ITM methodology is used when the grazing angle is 
less than 0.2 radians.  
 
The next ITWOM section deals with what Tech Note gives instructions for, but that 
the ITM could not do; directly address and compute the loss due to a single, large 
and/or knife-edge type obstacle.   
 
An else statement provides an alternative path to the if statement, If (int(ds)>0), above.  If 
ds is less than or equal to 0.0, then there is one obstacle or a line-of-sight path.  Since this 
is the diffraction subroutine, it indicates a single obstruction.  What follows is a new 
ITWOM path to compute the diffraction attenuation for a single obstacle, something that 
the ITM has never been able to do.    
  

77.  An if statement follows; for a single obstruction scenario where the receiver 
is at the peak, indicated as where the integer value of ds, is zero, then the 
attenuation is set to be the standard diffraction loss value for a peak; 5.8 dB, 
plus an arbitrary reduced value, one-quarter of the calculated clutter loss, 
saalos, as the peak of an obstruction suffers less clutter loss.  By definition, 
the clutter canopy depth is less than the average, to none, at an obstacle peak, 
depending upon the nature of the obstacle.  As more detailed terrain databases 
become available, this could be improved upon; when a building is 
recognized, the clutter loss value could be made to be zero, leaving only the 
diffraction loss.  

78. An else statement follows, so when there is a single obstruction scenario and 
the receiver is past the peak, then: 

 
79. An embedded if statement is initialized within the else statement.  If the 

receiver grazing angle is greater than 0.2, then:  
 



Line(new): if(prop.the[1]>0.2) 
  { 

Argument adiffv2 is set to be equal to the 5.8 dB of diffraction attenuation 
at an obstacle peak where v=0, taken from Figure 7.1, Tech Note 101.  

  
Line 262:  adiffv2=5.8; 
  

80.  A fourth-level embedded if statement is initiated, so that if the receive site 
grazing angle is greater than 0.6 radians, then the value of prop.tgh is lowered 
by 1.0 meter, resetting it to be equal to the clutter height.  This allows saalos 
to treat the diffracted signal at the second peak as if it were a radiating from a 
secondary transmitting antenna at the clutter canopy height, with the signal 
passing through the clutter on the side of the obstacle on its way down the side 
of the obstacle to the receiver. 

 
Line     :   if(prop.the[1]>0.6) 
  { 
   prop.tgh−=1.0; 
   } 
 

81. A following fourth-level embedded if statement is initiated; if the receive site 
grazing angle is more than 0.2 radians, and less than 1.22 radians: 
b. If the receiver antenna is at or below the clutter canopy height, a call to 

saalos calculates the clutter loss, which is added to the diffraction loss 
already stored in adiffv2. 

c. An else statement follows; if the receiver antenna is above the clutter 
canopy height, a standard knife edge calculation is used. 

d. An else statement follows; if prop.the is equal to or greater than 1.22 
radians, then a deep shadow loss of 20 db is used. 
 

Note that if the grazing angle is more than 1.22 radians, the receive point is 
treated as a bare cliff or tall building, and a 20 db deep shadow loss is added to 
adiffv. 

 
Line (new): if(prop.the[1]<1.22) 

{ 
   rd=prop.dl[1]; 
   if(prop.hg[1]<=prop.cch) 
   {    
    adiffv2+=saalos(rd, prop, propa); 
   } 
   else 
   { 
    adiffv2=aknfe(0.6365*prop.wn*abs(dto+dro-dtr)); 
   } 
  } 



 else 
 {  
  adiffv2+=20.0; 
 } 
 

Here we utilize an updated version of the “original” Tech Note 1 diffraction methodology 
for a single obstacle, based on the description in section 7 of the TN101, for a bare-top 
obstacle (mountain), which is not used in the ITM.  For obstacles (hills and mountains) 
that have foliated tops (are not above the tree line) a completely new methodology is 
used.   

 
82.  An else statement then provides an alternative path to the if (prop.the[1]> 0.2) 

statement, so for a single obstruction between a transmitter site and a receive 
site, where the receive site grazing angle is equal to or less than 0.2 degrees, 
then: 

 
Line(new): else 
  { 
   
 

83. One problem lies within the approximation used to compute v2 in the ITM; it 
becomes less accurate when the receive terminal is near an obstruction, and 
fails entirely where there is a single obstruction, where dl[0]+dl[1]=d.   Code 
has been added to hzns to output the obstruction heights to prop.hht and 
prop.hhr; with these, we can most accurately compute dto and dro, the path 
distance from each terminal to the transmitter and receiver obstruction peaks 
using the instructions in section 7 of TN101.     

 
For a single knife edge, the “internal wedge angle” coefficient, v, is computed from: 
   

v = 2(|∆r|/λ)1/2

 
  v2 = v2 =4|∆r|/λ    
 

where : λ is the wavelength, and 
∆r is the path length difference, which can be computed as: 

 
 ∆r = r1+r2-r0 =  dto+dro-dtr  [Tech Note 101, Section 7.1] 
 

Since we are using the wave number instead of wavelength, we must convert our 
formula: 
 λ=ckm/sec/(1000*f MHz), and wn*47.7=fMHz, so: 
 

 λ=ckm/sec /(wn*47,700), and  1/λ= (wn*47,000)/ckm/sec     
 
where c is the speed of light, 299,792 kilometers/sec;  



 
1/λ= (wn*47,700)/ 299,792 km/sec = 0.1591wn 

 
and since q will now represent v2, aka v2, temporarily, for a single knife-edge obstacle:  
 
      q=22*(|∆r|/λ)=(4*(0.1591*wn*abs(dto+dhh-dtr)=.6365*prop.wn*abs(dto+dhh-dtr) 
 
A more in-depth version of this page’s information was discussed in the previous two-
obstacle section. 
 
Line(new):q=0.6365*prop.wn∗abs(dto+dhh-dtr); 
 

84. An if statement is initiated.  If the height of the obstacle is below the average 
tree line (based on the average tree line height of the Rocky Mountains), then:  

85.  
Line :     if (prop.hht < 3400)  
        { 
 

86.  A completely new methodology is used; based on the primary signal being 
the signal scattered through the thin layer of foliage atop an obstruction (with 
a 0.6 absolute phase delay) against multipath created by the signal diffracting 
over the clutter canopy. (A variation on two-ray path). 

87. The cancellation distance to the receiver, cdr, is calculated from the 
difference, in number of wavelengths, between the diffracted signal across the 
top of the obstacle, which includes the foliage off which the signal was 
reflected, and the foliated scatter path across the top of the obstacle, calculated 
using the obstacle height from SRTM database less clutter height.  

 
The equation is:  cdr= scatter phase delay + ∆r/λ.      
 
Converting this equation to use the wave number instead of the wavelength, 
where the wave number, wn, for an electric field is: wn = 2π/λ, 1/λ = wn/2π; 
 

cdr = scatter phase delay + ∆r(wn/2π)  
 

The scatter phase delay has been empirically determined to be an average of 
0.6 = scatter phase delay, so then: 
 

cdr = 0.6 + 0.159155∗wn*∆r 
 

a. For a single obstacle, ∆r = abs( dto+dro-dtof-drof), then:                           
cdr = 0.6 + 0.159155∗wn* abs( dto+dro-dtof-drof). 

b. We then determine the cancellation percentage.   The decimal places, the 
value to the right of the decimal point, of the cdr value, is the phase 
difference between the two signals in hertz. We strip off the decimal 
places by subtracting the integer value of the cdr from the full value, 



leaving only the decimal places value.  This is multiplied by 2 and 
subtracted from 1, so that the value goes from 1.0 to 0.0 for the first half 
cycle, representing in-phase to out-of phase, and then, from 0.0 to –1 as 
the signal passes through the second half cycle, back from out-of-phase to 
in-phase.  The value of 6.0 represents the additive situation, where both 
signals are in-phase, as log10(1) = 0.0.  The maximum out-of phase 
situation is limited to 0.03, to establish a maximum cancellation value 
equal to  -6-20*(-1.52)=24.45 dB, an empirical practical value determined 
from the author’s experience in calibration and adjustment of deep-nulling 
antenna arrays on TV translators used to protect the NRAO Greenbank 
installation.   This limiting also prevents a log10(0) calculation, which fails, 
as log10(0) is not a computable value.  The range of arp is then 1.0 for 
exactly in-phase, down to 0.03 for completely out-of-phase, and -
20*log10(arp) then ranges from 0 for in-phase to 30.4 for out-of phase, 
resulting in an adiffv loss range of –6 dB (a gain) for in-phase, up to a 
24.45 dB limited maximum loss for out-of-phase.   
 

Line:  arp=abs(1.0 –2.0*(cdr-(int(cdr)))); 
  arp=mymax(arp,0.03); 
   adiffv=-6.0-20.0*log10(arp); 
 

88.  An else statement provides an alternate path to the “if” statement above. If 
the obstruction is above the tree line, indicating a clean, knife edge diffraction 
scenario:  

89.  Adiffv2 is then set to equal the sum of:   
a. the attenuation from knife edge diffraction from a single obstacle peak to a 

receive site beyond the peak, with a call to aknfe with input q, to compute 
the diffraction attenuation for the first obstacle,  

b. a call to saalos to add the clutter losses on the path to the receiver antenna. 
  
Line(new): else 
  {  

adiffv2=aknfe(q); 
  } 
                   adiffv2+=saalos(rd, prop, propa); 

 
90.  The if and else statements have completed.  The subroutine returns adiffv2. 

 
Line (new):  return adiffv2; 

 



SUBROUTINE AHD: A functional explanation, by Sid Shumate.   
Last Revised July 15, 2007. 
 
Approximate tHeta D function for scatter fields; subroutine: ahd. 
 
Note: Used with both point-to-point mode and area mode.  Called by ascat.  
 
Descriptions derived from the Irregular Terrain Model description by George Hufford, 
2002, (ITMD), compared to the ITM.cpp prepared by J. D. McDonald and John 
Magliacane for compilation on unix and linux systems.  “Line” numbers refer to the 
ITM.cpp as line numbered by Bloodshed Software’s DevC++ print function.  “Alg” 
numbers refer to the algorithm formula in “The ITS Irregular Terrain Model, version 
1.22, the Algorithm” by G. A. Hufford, 1995. 
 
From ITMD Section 26: 
 
This is the F(θ d) function for scatter fields. 
 
As defined in the Algorithm, Section 6,  “Addenda – numerical approximations.”  This 
section starts by mentioning:  

 
“Part of the algorithm for the ITM consists in approximations for the standard 
functions that have been used.  In these approximations, computational simplicity 
has often taken greater priority than accuracy.”   

 
The Algorithm later states: 
 

“we have the two functions, F(θ d) and H0 , used for tropospheric scatter.  First,   
 
  F(D, Ns ) =  F0 (D)  − 0.1 (Ns  −  301 )e−D/Do 

    (6.8) 
 
 where 
   
  D0  = 40 km  
 

And (when D0 is given in meters) 
 
  F0 (D) =  133.4 + 0.332 * 10−3 * D  − 10 * log D   for 0 < D < 10 km, or 

   
  F0 (D) =  104.6 + 0.212 * 10−3 * D − 2.5 * log D   for 10 < D < 70 km, or 
 
  F0 (D) =  71.8 + 0.157 * 10−3 * D  + 5 * log D     otherwise “  (6.9) 
 
This can also be found in Annex III, Section III.5 “Forward Scatter”, of Tech Note 101; 
from equations [TN101 III.46, 47, and 48] on page III-24. 
 



Call inputs for subroutine ahd: 
 
 Td D ,   distance in meters 
 
 
Declares private, or local, arguments:  
i; 
 a[3]={      133.4,       104.6,           71.8}; 
 b[3]={ 0.332e−3,  0.212e−3, 0.157e−3}; 
 c[3]= {     −4.343,   − 1.086,       2.171 }; 
 
 
In this subroutine: 
 

1. Initiates an if statement.  If td is less than or equal to 10,000 meters, then 
the value of i is set to be equal to zero. 
 

Line 207:    if (td<=10e3) 
   i=0; 

 
2. An else if statement follows; if td, at line 207, was more than 10,000 meters, and 

less than or equal to 70,000 meters, then the value of i is set to be equal to 1. 
 
Line 178:  else if (td<=70e3) 
   i=1; 
  

3. An else statement follows; so if td, at line 207, was more than 70,000 meters, 
then:  

 
i is set to be equal to 2. 

 
Line  213: else 
   i=2;      
  

4. The subroutine then calculates and returns the value of F0 (D),  using the 
appropriate formula from (6.9):   

 
Line 216: return a[i] + b[i] *td +c[i] * log(td); 
 



SUBROUTINE AKNFE: A functional explanation, by Sid Shumate.   
 
Last Revised: Feb. 14, 2009 to clarify description.  

previous last correction March 22, 2008. 
 
Attenuation from Knife Edge Diffraction subroutine. 
 
Note: Used with both point-to-point and area modes.  Called by adiff. 
 
Descriptions derived from the Irregular Terrain Model description by George Hufford, 
2002, (ITMD), compared to the ITM.cpp prepared by J. D. McDonald and John 
Magliacane for compilation on unix and linux systems.  “Line” numbers refer to the 
ITM.cpp source code supplied for use with SPLAT! version 1.2.0b, the Linux-based 
open-source Longley-Rice program, as line numbered by Bloodshed Software’s DevC++ 
print function.  “Alg” numbers refer to the algorithm formula in “The ITS Irregular 
Terrain Model, version 1.22, the Algorithm” by G. A. Hufford, 1995 (the Algorithm).  
“ITS67” numbers refer to the algorithm formulas in “ESSA Technical Report ERL 79-
ITS 67, Prediction of Tropospheric Radio Transmission Over Irregular Terrain, A 
Computer Method – 1968” (ITS-67) by A.G.Longley and P.L.Rice.   Reference may also 
be made to “Ultra-Short-Wave Propagation, (USWP), by Schelleng, Burrows, and 
Ferrell, Bell Telephone Laboratories, as published in the Proceedings of the IRE, March, 
1933. 
 
From ITMD Section 13:      
 
The function aknfe computes the attenuation due to a single knife edge – using the 
Fresnel integral (in decibels) as a function of v2, the square of the internal wedge angle.  
The approximation is that given in [Alg. 6.1]. 
 
Call inputs:  & v2  
 
defines private, or local, arguments:  
 
a attenuation due to a single knife edge 
 
This subroutine: 

 
1. The argument v2, represents the square of v; v is the difference, measured in 

wavelengths, between: 
a. the direct signal from a transmitter to a receiver over a line of sight,  

versus the delayed path (including the phase reversal for horizontal or low 
angle vertical polarity at the reflection point) from a reflection off of a 
sharp-peaked obstruction that is at or below, but near, the line of sight 
path, or: 



b. the diffracted and delayed signal bending over an obstruction by 
diffraction, versus the direct wavelet front passing over the top of the     
knife edge (see external discussions of the theory of a Cornu spiral)  

 
An if statement is initiated; if v2 is less than 5.76 (i.e., if v is less than 2.4 
wavelengths), then: 
 

a is set to be equal to: 6.02 + 9.11 * sqrt(v2) −1.27 * v2 
 
Line 122: if (v2<5.76) 
   a=6.02+9.11*sqrt(v2)-1.27*v2; 
 

2. The following else statement provides that if v2 is equal to or more than 5.76:  
 
a is set to be equal to: 12.953 + 10*log10(v2). 
 

Note:  the ITM, versions 1.2.2 to 7.0, continues to use an early, outdated form of log10, 
as in the original language used in ITS-67, FORTRAN 66 (a.k.a. Fortran IV), there is no 
common logarithm function, and the ALOG function was, in fact, the natural log, or ln, 
function.  To obtain the result of a common logarithm (log to the base 10, or log10), the 
natural log function ALOG was used and the result was multiplied by .4343 to obtain the 
result that would have been obtained from a common logarithm. 
 
In c++ source code, the FORTRAN ALOG function becomes the log function, multiplied 
by .4343, still duplicating the original form of the source code in order to duplicate the 
results of the newer log10, or common logarithm (log to the base 10) function.  
Therefore, 4.343*log can be replaced by the more modern 10*log10, changing:  
 
Line 124: else 
        a=12.953+4.343*log(v2); 
to: 
Line 124: else 
        a=12.953+10*log10(v2); 
 

3. Subroutine aknfe returns the value of a, the attenuation due to a single knife edge. 
 
This is a very crude approximation derived from Fresnel integral expressions for a, the 
real component, and b, the phase, or imaginary component.     
   
Line 126:   return a; 



SUBROUTINE ALOS: A functional explanation, by Sid Shumate.   
 
Last Revised: July 15, 2007. 
 
Attenuation for Line of Sight subroutine; alos. 
 
 
Note: Used with both point-to-point and area modes.  Called by lrprop.  Calls abq_alos, 
mymin, and mymax.. 
 
Descriptions derived from the Irregular Terrain Model description by George Hufford, 
2002, (ITMD), compared to the ITM.cpp prepared by J. D. McDonald and John 
Magliacane for compilation on unix and linux systems.  “Line” numbers refer to the 
ITM.cpp as line numbered by Bloodshed Software’s DevC++ print function.  “Alg” 
numbers refer to the algorithm formula in “The ITS Irregular Terrain Model, version 
1.22, the Algorithm” by G. A. Hufford, 1995 (the Algorithm).  “ITS67” numbers refer to 
the algorithm formulas in “ESSA Technical Report ERL 79-ITS 67, Prediction of 
Tropospheric Radio Transmission Over Irregular Terrain, A Computer Method – 1968” 
by A.G.Longley and P.L.Rice.  
 
 
 
From ITMD Sections 17, 18, 19:      
 
The function alos computes the line-of-sight attenuation for a distance d. It uses a convex 
combination of plane earth fields and diffracted fields.  A call with d = 0 sets up initial 
constants.   
 
Call inputs:   
double d  
prop_type  
& prop  array with constants 
propa_type  
& propa array with constants 
 
 
 
defines private, or local, arguments:  
 
complex<double> prop_zgnd (prop_zgndreal,prop.zgndimag); 
static double wls 
complex<double> r 
double s 
double sps 
double q 
double alosv 



 
 
 
 
 
In this subroutine: 

 
1. An if statement is initiated; if d is equal to zero, then: 
 

a. wls is set to be equal to: 0.021, divided by (0.021+prop.wn*prop.dh), and 
all of which is divided by the greater of 10,000 or propa.dlsa; 
 
where  

   prop.wn is the wave number, = frequency/47.7 MHz *meters 
prop.dh is delta h, or ∆h, the terrain irregularity parameter 
propa.dlsa is the sum of the two smooth earth horizon distances; 
from the terminals to the horizon over smooth earth    

 
b. alosv is set to be equal to zero. 

 
Line 405:  if (d= = 0.0)  
 
  { 
   wls=0.021/(0.021+prop.wn*prop.dh/mymax(10e3,propa.dlsa)); 
   alosv=0.0; 
  } 

 
2. An else statement follows, so if d is not equal to zero, then: 

 
a. q is set to be equal to (1.0 - 0.8(-d/50,000))*prop.dh; 

 
where 

   prop.dh is delta h, or ∆h, the terrain irregularity parameter 
 

b. s is set to be equal to 0.78 * q *10^(-(q/16.0)0.25)); 
   

c.  q is set to be equal to the sum of prop.he[0]+prop.he[1]; 
where 
 prop.he[0] is the effective height of the transmit antenna 

prop.he[1] is the effective height of the receive antenna 
  

d. sps is set to be equal to q/sqrt(d*d+q*q); 
  

e. r is set to be equal to:  
(sps-prop_zgnd)/(sps+prop_zgnd)*exp(-mymin(10.0,prop.wn*s*sps)); 

 



 
f. The subroutine abq_alos is called with input (r).   
 

The subroutine abq_alos , in its entirety, consists of: 
 

double abq_alos (complex<double> r) 
{ 

    return r.real()*r.real()+r.imag()*r.imag(); 
} 

 
The subroutine abq_alos returns r.real()*r.real()+r.imag()*r.imag(),   
and  q is set to be equal to  r.real()*r.real()+r.imag()*r.imag(); 

 
Line 411:   else 
       { 
  q=(1.0-0.8*exp(-d/50e3))*prop.dh; 
  s=0.78*q*exp(-pow(q/16.0,0.25)); 
  q=prop.he[0]+prop.he[1]; 
  sps=q/sqrt(d*d+q*q); 
  r=(sps-prop_zgnd)/(sps+prop_zgnd)*exp(-mymin(10.0,prop.wn*s*sps)); 
  q=abq_alos(r); 
 
  

3. An if statement is initiated; if q is less than 0.25 or if q is less than sps, then: 
   r is set to be equal to r*(sps/q)1/2; 
 
 Line 420:  if (q<0.25 || q<sps) 
   r=r*sqrt(sps/q); 
 

4.  alosv is then set to be equal to [propa.emd * d + propa.aed]; 
where: 

  propa.emd has been set equal to (a4-a3)/(d4-d3) in lrprop     
d       is the path distance 

  propa.aed  has been set equal to a3−propa.emd*d3 
 

  And q is reset to be equal to: prop.wn*prop.he[0]*prop.he[1]*2.0/d; 
  where: 
   prop.wn is the wave number 

prop.he[0] is the effective height of the transmit antenna 
prop.he[1] is the effective height of the transmit antenna 
d  is the path distance 

 
 Line 423: alosv=propa.emd*d+propa.aed; 
  q=prop.wn*prop.he[0]*prop.he[1]*2.0/d; 
 
  



An if statement is initiated; if q is greater than 1.57, then q is reset to be equal 
to: 3.14- (2.4649/q). 

  
Line 426: if (q>1.57) 
   q=3.14-2.4649/q; 
 

5.   
The subroutine abq_alos is called with input (complex<double>(cos(q),-
sin(q))+r)).   
 

The subroutine abq_alos , in its entirety, consists of: 
 

double abq_alos (complex<double> r) 
{ 

    return r.real()*r.real()+r.imag()*r.imag(); 
} 

 
The subroutine abq_alos returns r.real()*r.real()+r.imag()*r.imag().  
 
alosv is then reset to be equal to: 

 
(-4.343*log((return from abq_alos: r.real()*r.real()+r.imag()*r.imag() -
alosv)*wls+alosv; 

 
Line 429:   alosv=(-4.343*log(abq_alos(complex<double>(cos(q),-sin(q))+r))-

alosv)*wls+alosv; 
  } 
 
NOTE THE USE HERE OF THE CONSTANT 4.343, INSTEAD OF 10 AS USED IN 
LONGLEY RICE.  
 
 

6. The subroutine alos returns alosv, the value of the line of sight attenuation; 
 
Line 432:  return alosv; 

      } 
 



SUBROUTINE ALOS2:  A functional explanation, by Sid Shumate.   
 
 
Revised Oct 18, 2010 to utilize reflection point determination in hzns2. 
Last Revised: Sept. 19, 2008. 
 
Attenuation for Line of Sight, version 2, for use as part of ITWOM; alos2. 
 
Note: To be used with point-to-point mode and area mode.  Called by lrprop.  Calls 
abq_alos, mymin, and mymax. 
 
Descriptions derived from the Irregular Terrain Model description by George Hufford, 
2002, (ITMD), compared to the ITM.cpp, the ITMDLL.cpp, minimally modified by J. D. 
McDonald and John Magliacane for compilation on unix and linux systems.  “Line” 
numbers refer to the ITM.cpp as line numbered by Bloodshed Software’s DevC++ print 
function.  “Alg” numbers refer to the algorithm formula in “The ITS Irregular Terrain 
Model, version 1.22, the Algorithm” by G. A. Hufford, 1995 (the Algorithm).  “ITS67” 
numbers refer to the algorithm formulas in “ESSA Technical Report ERL 79-ITS 67, 
Prediction of Tropospheric Radio Transmission Over Irregular Terrain, A Computer 
Method – 1968” by A.G.Longley and P.L.Rice.  
 
 
Background:   Place earth field, a.k.a. ray-tracing, two-ray, and multipath 
calculations. 
 
Plane earth fields calculations, often referred to as two-ray, or, when expanded in scope, 
as multiple ray tracing, multipath, wavefront, or wavelet calculations, start out with the 
basic concept of a direct, main signal ray, r0, also described as the “incident plane wave”, 
traveling from the transmitting antenna to the receive antenna.  A second set of rays, r1 
and r2, are traveling in the same plane as r0. The ray r1 travels from the transmitter antenna 
to the earths’ surface, where a reflected ray r2 then proceeds to meet up with the direct ray 
at the receive antenna.  The combination of these two rays is complex; the two signals 
can theoretically add together to double (a 6 dBµ increase) the RF field arriving at the 
receive antenna, but only if they arrive at the same time, (i.e. “in phase”); each with a 
path length equal to a precise multiple of the wavelength of the signal.  If they arrive 180 
degrees (or π radians) out of phase, they will cancel each other out, creating a null in the 
received signal, often experienced as a “stoplight fade” while listening to FM in a car.  
 
The angle between ray r1 and the ground is called the grazing angle, and is normally 
represented by the Greek symbol (Ψ).  If the reflecting medium (the earth) is not a perfect 
reflector, the grazing angle between the ray leaving the reflection point, r2 , and the earth, 
will be perpendicular (90 degrees off of) the angle of the signal absorbed into the ground.  
However, in the Longley-Rice equations, the earth’s surface is close enough to a perfect 
reflector that the grazing angle of ray r1 is often, for practical purposes, considered to be 
equal to the grazing angle of ray r2.  
 



Another factor in the path calculation is the phase of the reflected signal. In horizontal 
polarization, the phase of the reflected signal reverses (zero degrees becomes 180, or the 
effective length changes by ½ wavelength) at the reflection point. In vertical polarization, 
the reflected ray r2 is in phase with the incoming ray r1 at a high grazing angle 
approaching π/2 radians (90o), but as the path length increases, the grazing angle 
becomes smaller. At a particular grazing angle the strength of the vertically polarized 
reflection signal, r2, drops into a wide, deep null to zero.  For a perfectly reflecting 
medium, this grazing angle is referred to as the “Brewster” angle, and can be determined 
using the equation: ΨΒ = cot-1 (εr )1/2 where for two lossless mediums, εr  = ε2 /ε1 , and the 
product of the dielectric constants ε2 and ε1 of the two media is a real number.      
 
Slight differences in the reflecting media cause this critical angle to change values for 
signal strength (the real number) and phase (the imaginary number); for any imperfect 
reflecting medium, this critical grazing angle is then referred to as the “Pseudo-Brewster 
angle” (PSB).  For a PSB, the null in the vertically polarized reflection is not as deep as 
for a Brewster angle.  Below the PSB, the vertically polarized reflection signal rapidly 
changes phase with the angle, from 90 degrees (π/2 radians) to 180 degrees (π/2 radians) 
out of phase.  For the origin of the equations regarding the Pseudo-Brewster angle, we 
defer to “The Pseudo-Brewster Angle”, by G. P. Ohman. (see bibliography). 
 
Ground (or sea) irregularities at the reflection point, and clutter, at and near the reflection 
point and between the reflection point and a low receiver, can affect the strength, phase, 
and phase coherence of the received reflected signal.    
 
 
Reflection coefficient, the PSB and low grazing angles:  
 
“Grazing Behavior of Scatter and Propagation Above Any Rough Surface”, was 
published in January of 1998 in the IEEE Trans. On Antennas and Propagation. The 
author is Dr. Donald Barrick, a radar propagation expert who served from 1972 to 1982 
as Chief of the Sea State Studies Division of NOAA’s Wave Propagation Laboratory in 
Boulder, CO.  The conclusions include: 
 

“Our results show that backscattered power depends on grazing angle to 
the fourth power; the impedance and admittance are constant as grazing is 
approached.  These relations hold true for both polarizations, for arbitrary surface 
materials (including perfect conductors), for all frequency/roughness scales, and 
for a single deterministic roughness profile as well as averages over surface 
ensembles. …we considered only backscatter rather than arbitrary bistatic scatter, 
…but the extension to bistatic scatter is obvious: as either the incidence or 
scattering angle alone approaches grazing, echo power decreases as grazing angle 
squared.      

 
Although our approach was primarily employed to establish general 

grazing-limit behavior, our simple angle-independent constants describing 
backscatter and propagation are useful in their own right; these expressions allow 



a single numerical evaluation to serve the entire near-grazing region up to the 
Brewster angle.”  

 
Bistatic radar systems, which include but are not limited to passive radar systems, are 
radar systems where the transmitter and receiver are widely separated.  They operate in a 
like manner to FM and TV broadcasting systems with respect to plane wave 
considerations; therefore, we can extend Dr. Barrick’s conclusions to the case of plane 
wave reflections.  The theory, however, must now change in name from plane wave to 
wavefront, or wavelet, consideration, as Barrack’s conclusions shift the analysis from a 2 
dimensional plane-wave consideration of a reflection at a spot in a path, to a three-
dimensional, Newtonian conservation-of-energy revelation, regarding the consideration 
of wavelet-based reflections from a large ground area. 
  
Stated another way; we are not actually dealing with two rays; that is a two dimensional 
(plane) model useful for calculation of the strongest, central part of a wavefront.  In a 
model closer to reality, we are dealing with a wavefront, and wavelet theory in four 
dimensions.  Here Barrick found that a form of Newton’s second law, a conservation of 
energy, exists in radio reflection.  The reflection energy at small grazing angles is not 
entirely lost due to rough surface scattering; for rough but unobstructed surfaces at the 
reflection point for which there is no ground clutter absorption (such as a rough desert 
surface) the energy of a narrowband radio signal in the main reflection ray r1 and r2 that is 
lost due to roughness of the surface, in a two-dimensional single-ray consideration, is 
regained in additional reflections from the rough surface in a three-dimensional 
wavefront reflection area consideration, and therefore, for a ray reflecting off of a surface 
without significant obstructions or absorbing ground clutter such as vegetation, the 
strength of the reflected ray will essentially be the same as over a smooth surface.  One 
can say that the energy that reflects off in other directions, and is lost due to a rough (but 
still highly reflective) surface, equals the energy reflected to the receive terminal from 
other points on the same surface that would have otherwise been directed, in plane waves, 
toward other receive terminals.  The phase coherence, however, will be affected; there 
will be a variation in arrival time from these additional reflections that will create 
variations in phase and realizable signal strength across the bandwidth of wideband 
signals.   
 
Barrick’s equations allow us to ignore the previously considered scattering effect of 
roughness on plane wave calculations at low grazing angles over nearly smooth or very 
slightly irregular surfaces, treating these surfaces as smooth earth surfaces with respect to 
roughness.  Absorption (refractive transmission of the signal into a lossy medium, rather 
than reflection, or passage through an absorptive medium, such as leaves), however, 
remains a major factor, rapidly damping out the two-ray or wavefront reflection losses to 
near zero as the terrain roughness factor, ∆h (dh) increases beyond 4 meters.  As ∆h 
continues to increase, these absorptive losses take over as the primary cause of line-of-
sight losses in addition to free space losses for the line of sight range.      
 



The Absorptive Clutter Losses, which we will refer to with the designation “AB” may be 
referred to as “Clutter”, or a component of “Clutter” however, this is somewhat 
confusing, as it does not match the definition of “Clutter” used in ITU-R P.1546-2.  
 
The complex relative impedance, Zg, derived from the ground constants in subroutine 
qlrps, is used to generate a Reflection coefficient, Re, with a range between 1 for no 
reflection loss to zero for no reflection.  In vertical polarity, this reflection coefficient also 
incorporates the effect of the Pseudo-Brewster angle (PBA), generating a reflection null 
at the PBA, and a 180-degree phase shift below the PBA.   The effect of ground 
irregularities are quantified using ∆h(d), the terrain roughness factor estimated at the 
subject path distance d, and incorporated into the argument sigma (σ), or s in the code, 
and an exponent factor, based on factors s, k, and sin Ψ, is multiplied to the reflection 
coefficient Re’, and represented in the code by argument r, for consideration of the effect 
of roughness, utilizing the dh factor, for reducing the depth of the nulls in the plane wave 
comb pattern at high grazing angles above Brewster’s angle.    
 
To summarize; to calculate the additional loss due to the interaction of ground-reflected 
waves with the primary, direct plane wave in line of sight paths prior to an obstruction, 
we will have to, by some means: 
 

1. Calculate the Brewster angle.  
  

2. For horizontal polarity:  
 

a. Calculate the “comb pattern” gain and attenuation due to the combination 
of the main and reflected rays.   

b. Incorporate the 180-degree phase change at the reflection point by adding 
a ½ wavelength of length to the reflected path total length computation. 
Adjust the attenuation amount due to the two-ray resultant comb pattern 
and far field null-out “depth” using a Rayleigh Criterion based reflection 
coefficient adjustment to account for damping effect of ground clutter and 
phase coherence reduction effect of rough ground reflections. 

c. Calculate the clutter losses, based on a set of calculations empirically 
derived from ITU Recommendation P.1546-2 Figures 1, 9, and 17. 

  
3.  For vertical polarity, in addition to the steps above for horizontal polarity: 

Above the Pseudo-Brewster angle; calculate the “comb pattern” gain and 
attenuation for no phase change at reflection point.  Also calculate the Pseudo-
Brewster angle signal null and phase angle change below the PBA. 

 
Many of these steps are incorporated, often in non-obvious ways, within the procedural 
steps below; we will point out how they are accomplished. 

  
From ITMD Sections 17, 18, 19:      
 



The function alos2 computes the line-of-sight attenuation for a distance d.  This is a 
parallel function to the alos subroutine originally found in the ITMDLL.cpp.  It computes 
losses due to two-ray losses (plane earth field losses), and also considers 3-dimensional 
multipath from rough, unobstructed terrain, which, as per Barrick’s equations, includes 
and incorporates any Ricean distributed scattered multipath.  A call with d = 0 sets up 
initial constants for the area mode; not required for line-of-sight.   
 
Improvements associated with ITWOM include replacing the older, discredited line-of-
sight range diffraction computations with a determination of ground clutter layer-related 
losses by a call to subroutine saalos, which uses the line-of-sight equations and 
methodology from Shumate’s Approximations, a set of deterministic approximation 
equations for Radiative Transfer Engine functions derived from ITU-R 1546-2, Figures 1, 
9 and 17.    
 
Call inputs:   
double d  
double pfl[ ] 
prop_type  
& prop  array with constants 
propa_type  
& propa array with constants 
 
defines private, or local, arguments:  
 
complex<double> prop_zgnd (prop_zgndreal,prop.zgndimag); 
complex<double> r 
 
double acd attenuation from clutter at path distance d 
double cd direct signal clutter exposure distance, in meters 
double cr reflected signal clutter exposure distance, in meters 
double dr distance to the reflection point 
double hr height of transmit antenna AMSL 
double ht height of receive site antenna AMSL 
double hrp terrain height at the 2-ray reflection point in meters AMSL. 
double re square of the polar vector value of the reflectivity coefficient 
double s sigma, representing the modified standard deviation of ∆h (dh), the terrain 

irregularity factor 
double sps sin Ψ, the sin of the (reception point) grazing angle  
double q utility argument, used to store temporary values in the subroutine 
double alosv attenuation in the line of sight range (in addition to free space loss). 
 
int rp pfl array interval number at the reflection point  
 

 
Here it is necessary to add an additional consideration not found in the original ITM 
version 1.2.2.  In the two-ray calculations, as the ground clutter (represented as a part of 



∆h(d), for lack of a better quantification) increases, the cancellation effect of the reflected 
ray disappears in the early part of the signal path; the reflectivity, R, of the ground clutter 
canopy is low near the transmitter site, and the transmissivity is high, so that the signal 
passes through the clutter canopy, and through the clutter, in order to bounce off the 
ground.  Then, if the receiver is above the clutter canopy, the signal must pass again 
through the clutter and clutter canopy to get to the receive point, being attenuated along 
the way by the clutter to the point that the multipath cancellation is negligible.   If the 
receive point is below the clutter canopy, the clutter attenuation also reduces the 
cancellation significantly.   
 
But when the grazing angle gets so small that the direct ray also passes through most of 
the same ground clutter as the reflected signal, the signal strength of the direct ray starts 
to approach the signal strength of the reflected ray, and the 2-ray cancellation effect again 
becomes noticeable.   To quantify this effect, we will make the assumption that the 
absorbing clutter through which the direct and reflected rays pass is statistically 
homogenous; i.e. attenuates approximately equally with distance. We will also assume, 
on the average, that the reflection point is at the midpoint in height of a layer of clutter 
represented by the height of the terrain irregularity factor.  
 
In addition, for reception points above the clutter canopy, from Snell’s Law geometry and 
Transmissivity/Reflectivity computations, the reflectivity R of the clutter canopy/ground 
irregularities increases toward 1.0 as the grazing angle approaches zero, allowing the 
cancellation effect of 2-ray computations to regain effect, as a slowly increasing 
cancellation factor.  
 
It will be necessary to determine the elevation height of the reflection point.  For the 
point-to-point mode, this can be determined using the value of rp=int(floor(d/pfl[1])) to 
obtain the pfl[rp+1] value from the terrain elevation database array.  For the area mode, 
we will not have the advantage of a terrain elevation database, and the exact reflection 
point height that is critical to this calculation is not available; therefore, we will not 
consider this additional attenuation in the area mode. 
  
To determine the location of the reflection point in order to determine the elevation 
height of the reflection point, the first step is to declare new arguments, int rp, the 
interval number of the reflection point, double dr, the distance to the reflection point, and 
double hrp, the elevation height at the reflection point.  We will also later need double 
hr, ht, cd, and cr.  
 
We will utilize the equation used in a test 2-ray multipath spreadsheet to determine the 
distance to the reflection point, dr; however, we will simplify to eliminate the refraction 
adjustments in order to obtain the correct value for the distance to the reflection point in 
the elevation database.   Therefore, calculating the distance from the transmitter to the 
reflection point, r1, in meters:  
 
 d1 =  dr  =  d/(1 + hr / ht)        (33.2) 
  



where to calculate d1, instead of: her = prop.he[0] and het = prop.he[1], which are 
calculated based on the height above the average terrain line, we will use the more exact:  
 

ht = (transmitter antenna RCAGL) + (terrain height above ground level at the 
transmitter site) = prop.hg[0] + pfl[2] 
hr = (receive antenna RCAGL) + (terrain height above ground level at the receive 
point) = prop.hg[1] + pfl[np+2]. 

 
These are already calculated in subroutine hzns, as za (ht) and zb (hr), and xi is also set to 
pfl[1].  To avoid having to load the entire pfl array into lrprop2, and then into alos2, we 
have calculated the reflection point location and height, and the interval width value, 
while in hzns and stored the values in the prop array. 

 
1. The values calculated in subroutine hzns are retrieved:  

a. Transmitter height, AMSL, in meters: ht=prop.ght; 
b. Receiver height, AMSL, in meters; hr=prop.ghr; 
c. Reflection point, designated by interval number; rp=prop.rpl; 
d. Reflection point height, in meters; hrp=prop.rph; 

 
We will use these values to determine the distance through the clutter that the 
reflected signal traverses, and to recalculate the effective terminal heights to be 
used to determine the relative phase difference between the direct and reflected 
signals. 

 
Line (new):    ht=prop.ght; 

hr=prop.ghr; 
rp=prop.rpl; 
hrp=prop.rph 

 
2. An if statement is initiated; if d is equal to zero, then: 
 

a. Argument alosv is set to be equal to zero. 
 

Line (new):  if (d= = 0.0)  
 
  { 
    alosv=0.0; 
  } 

 
3.  An else statement follows, so if d is not equal to zero, then: 

 
a. q is set to equal the sum of the  effective transmitter and receiver heights, 

and then used to calculate sps, the sin of psi, or Ψ, the receive site grazing 
angle, by dividing q by the square root of the squares of the distance and 
the sum of the effective heights. 

 



b. q is repurposed to be equal to (1.0 - 0.8e(-d/50,000))*prop.dh;  This equation 
takes the determined overall value of ∆h, the terrain irregularity parameter, 
and calculates the median estimate of ∆h(d), the terrain irregularity 
parameter at a desired distance d;  an equation empirically derived from a 
study of a large number of profiles.  For example; a ∆h of 90 meters, the 
resulting ∆h(d), using an exponent to the base e, ranges from 19.4 meters 
at a distance of a kilometer, to 63.4 meters at 50 km. and on to 90 meters 
at 100 km .   [ITS67 (3), p. 7], also see [ITS67 3.6a (modified)] or [Alg. 
3.9] 

 
where 

   prop.dh is delta h, or ∆h, the terrain irregularity parameter 
   d is the path distance in meters 
 
Line new:  else 
   { 

q=prop.he[0]+prop.he[1]; 
sps=q/sqrt(d*d+q*q); 
q=(1.0-0.8*exp(-d/50e3)*prop.dh; 

 
 
The distance, dr, from the transmitter site to the reflection point, calculated in 
hzns2, is retrieved from prop.rpd. The reflection point height is subtracted from 
the transmitter height AMSL ( ht , or ht) and the receive height AMSL, ( hr , or hr) 
to obtain the most accurate determination of the actual difference in wavelengths 
(not considering, yet, the 180o phase shift at the reflection point) between the 
direct and reflected rays:  

 
Line (new):  if prop.mdp<0 

{ 
dr=prop.rpd;   

    
4. Now that the distance to the reflection point, dr, and the reflection point height, 

hrp, are known: 
 

a. Calculate the direct signal Clutter Exposure, CEr0, the distance that the 
direct signal r0 traverses after it dips into the ground clutter, by multiplying 
the total path distance by the ratio of: the clutter height above the receiver, 
to the height difference between the transmitter and the receiver:   

 
cd = CEr0 = d*(prop.cch – hrg)/( ht – hr) 

 
  where:  
   d =  distance from transmit terminal to receive terminal 
   prop.cch = the average height of the clutter AGL, in meters 
   hrg =  receive terminal height AGL in meters 



   ht = ht  =  transmit terminal height AMSL in meters 
  hr = hr  =  receive terminal height AMSL in meters 

 
b.  Calculate the reflected signal Clutter Exposure, CEr1,2, the distance that 

the reflected rays r1 and r2 traverse through the ground clutter: 
 

cr = CEr1,2 = dr(prop.cch/(ht – hrp)) + (pd – dr) 
  where:   

dr = d1, the ground distance traversed by reflected ray r1 between 
the transmit terminal and the reflection point 
hrp=reflection point height AMSL in meters 
The (d – dr) term is the ground distance traversed by reflected ray 
r1 between the reflection point and the receive site. 

       
c. The ratio of: clutter exposure for the direct ray path, to clutter exposure for 

the reflected ray path, which will be used to determine the amount of 2-ray 
loss effect that will return, is then:   

 
    CER = CEr0/CEr1,2 = cd/cr  
 

The effect will return as this ratio approaches 1.   But the clutter loss per 
meter traversed can be high; the CER ratio will have to be very close to 
1.0 for the 2-ray cancellation to be noticeable.  The CER will normally be 
a miniscule fractional value, and at its highest will approach 1.  A 
logarithmic function is used to reduce the ∆h(d) to near zero, when the 
CER closely approaches 1. 

    
Therefore, as a reasonable first approximation, when the value of sin Ψ 
drops below 0.2 radians, and as the CER approaches 1, we fade back in 
the 2-ray cancellation effect, by multiplying ∆h(d) by the term: 

 
   (min(-20*log10 (CER), 1.0)  =  (min(-20*log10 (cd/cr), 1.0) 
    

The log of a fraction will produce a negative value.  The –20 is an 
arbitrarily chosen gain constant that can be adjusted to match measured 
results.  The term will produce a result of 1.0 until as such time as the 
direct ray traverses 90% of the clutter distance that the reflected ray 
traverses; the term will then approach 0 as the CER approaches a 1:1 ratio.       
This term is multiplied to the ∆h(d) only when the grazing angle becomes 
small.  This is accomplished by adding an if statement, as shown below 
the existing calculation of the ∆h(d), the value of which is temporarily 
held by q. 

 
Line new:    if sps<0.1 
      { 

      if ((prop.he[1]  – prop.dh) < 0.0) 



                 {  
            cd = mymax(0.01,pd*(prop.cch – hrg )/(ht – hr)); 
             cr = mymax(0.01,pd-dr+dr*(prop.cch/(ht – hrp)); 

          q=(1.0-0.8*exp(-d/50e3)*prop.dh*(mymin(-20*log10 (cd/cr),1.0))); 
           } 
     } 
  } 

5. s, (a.k.a. the factor σh(d), originally was specified to be the root-mean-square 
(rms) deviation of modified terrain elevations, yi, relative to the smooth earth 
curve defined by (TN101 5.16], within the limits of the first Fresnel zone in the 
horizontal reflecting plane.  In the irregular terrain model, it has been changed to a 
empirically derived “representation” of the standard deviation of the terrain and 
terrain clutter within the limits of the first Fresnel zone in the dominant reflecting 
plane, at a distance d, derived from ∆h(d).  It is set to be equal to 0.78 * q *10^ (-
(q/16.0)0.25)), where q, at this point in the subroutine, represents the terrain 
irregularity parameter at the same desired distance d, or ∆h(d).      [ITS67 3.6a 
modified], or [Alg.3.10] 

 
 For example, for a ∆h(d) of 50 meters, using an exponent with base e, 
then s will range from 20 meters at d = kilometer to 93 meters at 50 km. 
 

TN101 clearly states that, except where noted, all logarithmic functions are to the base 
10.   In the text, log refers to log10, or common logarithmic functions.   
 
The ITMDLL.cpp source code uses the c++ exp function three times in this subroutine, 
which returns the exponential function of x, which is the e number, 2.718282, raised to 
the power x.  This is the natural, not common, exponential function.  In c++, to obtain 10x 
requires use of the pow function.  Since there was no specific mention of the use of base 
e, it was necessary to consider whether replacing the use of exp(x) with pow(10,x) was 
necessary to obtain the correct function.   
 
We found that base 10, however, does not work for the ∆h and σ calculations, which are 
separate, statistical empirical constructs based on curve matching to derived empirical 
results.  They are, in fact, exponents to the base e.  This statement for ∆h can be verified 
in two ways; by comparing the results of the ∆h(d) calculation on the spreadsheet, with 
∆h set to 650 meters, to Figure 2.8 of ITS-67, page 2-13, and noting in the Algorithm that 
the equation [Alg. 3.9] clearly states that it is a base e exponent.  As to the σ calculation, 
we see by substituting an exponent to the base 10 that the answer becomes too large too 
soon and absurdly large at a great distance, verifying that the exponent is intended to be a 
natural exponent, i.e. to the base e.  Similarly, the third use, found below, also appears to 
work correctly as a natural exponent. 
 

a. q is repurposed by being reset to be equal to the sum of:  prop.he[0] + 
prop.he[1]; 

where 
 prop.he[0] is the effective height of the transmit antenna 



prop.he[1] is the effective height of the receive antenna 
  

b. sps (a.k.a. sin Ψ), the sine of the grazing angle, is set to be equal to 
q/sqrt(d*d+q*q), which is the sum of the transmitter effective height he[0] 
and receiver effective height he[1], divided by the length of the reflected 
rays r1 and r1, the two rays in the reflected path.  The reflected path length 
is calculated as the square root of the sum of the path distance squared and 
the square of the sum of the effective heights. 

  
NOTE:  This shortcut formula for calculating sps works well, and provides the same 
answer as a more conventional and slower, rigorous trigonometric solution. 
  

c. The magnitude of the theoretical plane earth reflection coefficient, r 
(replacing Rh,v in the earlier documentation, including ITS67, with a 
redefined, dual-polarity Re’ derived from the relative transfer impedance 
Zg),  is set to be equal to:  

 
Re’ = ((sinΨ − Zg)/ (sinΨ+Zg))exp[-kσh(d) sinΨ], 

 
NOTE: This is [Alg. 4.47], EXCEPT THAT (1) d has been substituted for the distance s 
for clarity; (2) a limitation on the maximum size of the exponent term, (kσh(d) sinΨ),  of – 
(10), has been added without documentation in the Algorithm.   
 
Note, for comparison to ITS67 3.8a, that since k = 2π/λ, then  (kσh(d) sinΨ) = ( 2π(σh(d) 
sinΨ)/λ), thereby incorporating, without reference in the documentation, a Rayleigh 
criteria-derived determination of roughness. 
 

Re’ = (sps − prop_zgnd)/(sps + prop_zgnd)*exp(− mymin(10.0,prop.wn*s*sps)); 
   [in lieu of ITS67 3.9a to 3.12, and 3.5, or Alg. 4.47 modified] 
  
To understand this equation, it must be split into two parts.  The (sps − prop_zgnd)/(sps + 
prop_zgnd) part is the reflection coefficient, Re, representing the percentage of power in 
ray r1, that is reflected as ray r2 over smooth earth. By changing the definition of zgnd, 
a.k.a. the ground transfer impedance, Zg, depending upon the polarity of the signal, this 
part of the equation includes consideration of the Pseudo-Brewster angle for vertical 
polarity, including the vertical polarity PBA null, and the phase reversal from above to 
below the PBA.  Above the PBA, the vertical polarity signal does not have a phase 
reversal at the reflection point.  Below the PBA, at small grazing angles (toward the 
horizon), the phase of the vertically polarized signal matches the horizontally polarized 
signal, which always has a phase reversal (a 180 degree, π radians, or ½ wavelength 
change) at the point of reflection.  The range of this part of the equation is from zero to 
one; zero indicating no reflection, and one indicating a no-loss reflection.  
 
The exponential part of this equation moderates the two-ray effects based upon the 
Rayleigh criterion applied to the terrain roughness, and functions correctly as a base e 
exponent. 



 
The Rayleigh Criterion, derived from optics as applied to electromagnetic wave theory, 
considers a reflection surface smooth if the path length differences due to terrain 
roughness are no more than a small fraction of a wavelength.  Specifically, a surface is 
considered rough if the phase difference variation due to the roughness is less than 0.5π 
radians, or 90o.  The phase shift equation used in ITS67 is: 
 
    δITS67 = 2π∆r/λ 
 
The path length equation for the reflected ray (r1 + r2) is:   
 

r1 + r2 = 2(he1he2)/d      [TM101 5.9], 
  

∆r = 2((he1+∆t)(he2+∆t)-(he1he2))/d 
 
Since the wave number, k, or prop.wn, is equal to 2π/λ, combining we get: 
 

δ = wn*∆r  = (wn) *2((he1+∆t)(he2+∆t)-(he1he2))/d from [Alg. 4.49, with d for s] 
 
 δ = (wn)*2((he1he2+∆the1+∆the2+∆t2-he1he2))/d = (wn)*2((∆the1+∆the2+∆t2))/d 
 

δ = (2wn∆t)(∆t + he1+he2)/d 
   
The (sin Ψ) after the terrain height change is:  (sin Ψ) = (∆t +he1 + he2)/d, so by replacing 
(∆t +he1 + he2)/d with (sin Ψ):   
 
  ∆δ = wn*∆r  = wn(∆t)(sin Ψ) 
 
So the terrain is considered rough if:  ∆δ = wn(∆t)( sin Ψ) >   0.5 radians 
 
 Solving for the roughness decision point of ∆t:   

 
∆t = 0.5 / wn*(sin Ψ) in units of meters 

 
As we move along the path, the grazing angle Ψ will get smaller; and the (sin Ψ) will get 
smaller.  For a 300 m. effective transmitter height, (sin Ψ) will change from 
approximately .99 at the first terrain interval from the base of the tower to 0.3 at 1 km, 
and to 0.006 at 50 km.  Since (sin Ψ) is in the denominator of the equation for ∆t, the 
roughness decision point becomes larger as we go away from the transmitter site.  
Therefore, the same roughness of terrain, as considered by the reflecting rays, appears 
much less rough at a distance than when the ray is almost vertical, near the transmitting 
site.   
 



When working with the Rayleigh criterion, the roughness is usually described in terms of 
the standard deviation σ, (here, s) of the terrain around the mean level.    A constant, C is 
derived, assessing the roughness in terms of σ;  

 
C =  4πσ(sin Ψ)/λ =  2kσ (sin Ψ) , or in c++,  C =  2(prop.wn)(s)(sps) 

 
However, this is based on the Rayleigh criterion’s usual derivation of the phase 
difference as being:  
   ∆δ = 2(∆t)(sin Ψ)  
where:  

the (sin Ψ) is derived from the height change divided by the horizontal distance of 
the incident, or incoming, ray.   

 
In the derivation for our two-ray example, the change in phase is: 
 

∆δ = wn*∆r  = wn*(∆t)(sin Ψ) 
 
So in this case, and by replacing 2π/λ with the wave number, k, a.k.a. prop.wn, we have:  

 
C = 2πσ(sin Ψ)/λ =  kσ (sin Ψ), or in c++, C =  (prop.wn*s*sps) 

 
Which we recognize as the exponent of the right side of the equation for Re’   

 
The Rayleigh criterion here is that if C < 0.1, then we have a smooth surface.  If C > 10 
then the reflection is so diffuse that it can usually be neglected.  So we can limit the 
equation at 10, and we can understand the limitation on the maximum size of the 
exponent term, (kσh(d) sinΨ),  of 10, that is found in the c++ code as mymax (10, 
prop.wn*s*sps). This limitation is not documented in the Algorithm. 
 
Checked for proper exponential function to the base e, the code reads: 
 

r=(sps-prop_zgnd)/(sps+prop_zgnd)*exp(-mymin(10.0,prop.wn*s*sps)); 
 
 
What r represents at this point is the complex reflection coefficient Re’. 
 

d. The subroutine abq_alos is called with input (r).   
 

The subroutine abq_alos , in its entirety, consists of: 
 

double abq_alos (complex<double> r) 
{ 

    return (r.real()*r.real())+sqrt(r.imag()*r.imag()); 
} 

 



The subroutine abq_alos returns the sum of the square of r.real 
(r.real()*r.real()) plus the square of  (r.imag()*r.imag()), the absolute value of 
the real and phase components of the input argument.  Note, however, that it 
does not include the step of taking the square root of the sum of the squares, 
which would provide the value of the vector r, using the Pythagorean theorem, 
r = (a2 +b2)1/2.    
 
q is then set to be equal to the sum of the squares of the real and imaginary 
components of Rh,v, or Re;   r.real()*r.real() + r.imag()*r.imag().  So at this 
point, q represents the square of the value of:  Rh,v exp[-(2π σh sinΨ)/λ] in 
[ITS67 3.8a], i.e., the square of the polar co-ordinate “r” vector value of the 
reflection coefficient.   

 
In addition, in the test spreadsheet, we notice that minor rounding and 
truncation error causes the value of r to exceed its theoretical maximum of 1. 
So we add a corrective line that limits the value of r at a maximum of 1.0.  

 
Line (new): 
        

s=0.78*q*exp(-pow(q/16.0,0.25); 
 q=prop.he[0]+prop.he[1]; 
 sps=q/sqrt(d*d+q*q); 

q= exp(-mymin(10.0,prop.wn*s*sps)); 
r=((sps-prop_zgnd)/(sps+prop_zgnd))*q; 
q=abq_alos(r); 
q=mymin(q, 1.0); 

  
  

6. An if statement is initiated; if q, now representing the square of the value of:  Rh,v 
exp[-(2π σh sinΨ)/λ], is less than 0.25, and if q is less than sps, i.e. if the 
reflection coefficient is less that 0.25, and close to the transmitter site, where sps 
approaches the value of 1.0,  Re”, is set to be equal to: r*(sps/q)1/2, or 
r*(sinΨ/abq_alos(r))1/2, otherwise  r, remains Re”. 

[ITS67 3.8a, 3.8b modified] or [Alg. 4.48] 
 
If the reflection coefficient is both smaller than .25 and (sin Ψ), which occurs for rough 
ground near the transmitter site, at large grazing angles where refractivity is not relevant, 
depending upon the transmitter site effective height and the terrain irregularity, then the 
reflection coefficient is estimated as having a value equal to: (sin Ψ)1/2, with the sign of r 
(+ or -) retained by dividing r by its modulus, or absolute value.  
 
 Line new:  if (q<0.25 || q<sps) 
  { 
   r=r*sqrt(sps/q); 
  } 
 



7.  Here q is again reassigned and reset to be equal to the value of delta (δ), 
representing the phase difference, as a multiple of wavelengths, between the 
direct ray r0, and the primary reflected ray, r1 + r2, for vertical polarity above the 
Brewster angle, specified in radians, calculated as per [ITS67 3.3a] to be:   
 δITS67 = 2π∆r/λ =  π(∆r)fMHz /150  =  .041917 fMHz (he1*he2)/(d) 
where:   fMHz /300 = 1/λ 
   ∆r = (he1*he2)/(d) = 2*(he1*he2)/(d) 
    he1,he2  are the effective heights of the transmit and receive antennas 
    d is the line-of-sight path distance in meters.  

 
 NOTE: δITS67 is expressed in electrical radians.   In c++ code, we will calculate this is 
terms of number of wavelengths: 
  

prop.wn*prop.he[0]*prop.he[1]/(d*π);      
 
which is [ITS67 3.3a] or [Alg. 4.49] modified for units of wavelengths instead of 

radians. 
  where:    
   prop.wn is the wave number, fMHz/47.4 

prop.he[0] is the effective height of the transmit antenna 
prop.he[1] is the effective height of the transmit antenna 
d  is the path distance 

 
Note: Here we have another major weakness in the determination of ∆r above.  This 
calculation does not utilize the actual height of the reflection point, which we have 
now already determined above.   Instead, it uses the effective heights of the 
terminals, which incorporates by reference the average terrain height line 
calculated by subroutine zlsq1.   Clearly, as stated in the documentation, such 
information was to be used instead of calculated estimates such as the average terrain 
height line, where available. So we modify the equation using the terrain reflection 
point height, hrp, which allows us to use the heights of the transmit (ht) and receive 
(hr) terminals above mean sea level (AMSL) for highest accuracy, when in the point-
to-point mode.  
 
Line (new):   q=prop.wn*prop.he[0]*prop.he[1]/ d*3.1415926535897 
   

if prop.mdp<0 
{ 
q=prop.wn*((ht- hrp)*(hr- hrp))/d*3.1415926535897; 
} 

 
8.  In the original alos, where the line above reports in units of radians, here an if 

statement was initiated; if q, currently holding the value of δ’, the phase 
difference in radians between the direct ray, r0, and the indirect ray path r1 + r2, is 
greater than 1.57, (equal to π/2, or one-quarter rotation, or 90o) then q, 
representing δ, was reset to be equal to: 3.14- (2.4649/q), a.k.a  (π - (π/2)2/δ’).  



This compresses all rotation after the first ¼ cycle into just under one single slow 
cycle that approaches, but never reaches, a single null (π radians) far beyond the 
horizon.                   [Alg. 4.50] 

 
NOTE:  The entire exercise of utilizing plane wave calculation near the transmitter 
site has been all-but negated by this compression of the cycle, apparently used to 
attempt to make the results of the plane wave calculations act like a cumulative, 
contiguous, non-cyclical curve distribution, so a pseudo-curve of plane-wave loss 
can be calculated.   This compression all but eliminates the presentation of the 
fresnel zone nulls in the reception pattern, and forces an early entry into the post-
fresnel-zone fade to a null at a far distance.  This we will fix.   
 
We do have to utilize a manipulation, as the computer computation can only handle 
+ half of a cycle in polar notation, and a full 2π radian rotation in polar notation 
computes the addition to null swing effect of two wavelength-difference cycles.  We 
will use 0 to π/2 radians (0 to 90o) to represent an in-phase to an out-of phase swing 
of ½ of a wavelength-difference cycle (π radians), and then use a rocking-horse 
calculation that rocks back from π/2 to 0 radians during the second half of the phase 
rotation cycle, to mimic the action of the negative phase polarity half of each 
wavelength-difference cycle: 
  
Line (original): if (q>1.57) 
   q=3.14-2.4649/q; 
 
Replacing this with:  

Add the line: q-=floor(q), which converts the value of q from a 
multiple of wavelengths to a percentage (0 for an equal number of 
wavelengths, where the 2 rays add, through .5, where we have an out of 
phase cancellation null, and then almost to 1, where we again have an 
addition), of one rotational cycle; this is followed by an if statement, 
which converts q to radians/2 if q is less than ½ of a rotation, leaving 
δ with a range of 0 to π/2 radians (0 to 90o).  If q is more than ½ a rotation, 
the line following the else statement converts q to radians/2 and rocks 
back from π/2 to 0 radians during the second half of the rotation. 

    
Lines (new):  q-=floor(q); 
   if (q<0.5) 
   {  

  q*=3.141592654; 
   else 
    q=(1-q)* 3.141592654; 
   } 
 

9.  The subroutine abq_alos is called with input (complex<double>(cos(q),-
sin(q))+r)). 

 



The subroutine abq_alos , in its entirety, consists of: 
 

double abq_alos (complex<double> r) 
{ 

    return r.real()*r.real()+r.imag()*r.imag(); 
} 

 
The subroutine abq_alos returns (r.real()*r.real()+(r.imag()*r.imag(), the sum of 
the squares of the values of the real and phase components of r.  This subroutine 
takes as input the real and imaginary parts of a complex number expressed in 
Cartesian co-ordinates, in (a +bi) form, and outputs the square of the value of the 
polar co-ordinate r, the polar vector (as in the r in r(cos θ + sin θ), a complex 
number expressed in polar co-ordinates). 

 
The equation we are working from is:  

 
  At =  -10 log10 |1 + Reeiδ |          [Alg. 4.51] 

 
Let’s take a close look at the Reeiδ  term.  The complex exponential notation here 
can be confusing; especially since Re  is now a complex number.  It can be more 
easily understood if we write it as the multiplication of two complex numbers: 

 
  Reeiδ  =  (reeiθ

  )*(1eiδ) 
 

In complex numbers, the exponent does not indicate an exponent to the base of 
anything; it is, instead, used to indicate and define a complex number as 
consisting of the polar vectors r1 and r2 (in this case, re and 1), and the exponent 
ei(θ = phase angle). 

 
From the mathematical textbooks, we find that the multiplication of complex 
numbers can be stated in exponential notation as: 

 
  z1z2  =  (r1eiθ1)*( r2eiθ2)  =   r1 r2ei(θ1+θ2)       
 

where θ1 and θ2  are any arguments of, respectively,  z1 and z2.  Then, in polar 
coordinates form, this can be stated as: 

 
z1z2  =  r1 r2 (cos (θ1 + θ2) + i sin (θ1 + θ2))     

  
Or, in this case: 

 
Reeiδ  =  (reeiθ

  )*(1eiδ) =  re (cos (θr + δ) + i sin (θr + δ))     
 

At least, that is what the original coder attempted to do.  But this only works 
correctly in polar co-ordinates.   The problem here is that abq_alos, as a c++ 
subroutine, is set only to work with Cartesian co-ordinate inputs, even though its 



output is the square of the polar vector.  Since it is only a phase argument, the 
vector value, rδ, of δ is always one, therefore, its Cartesian and polar co-ordinate 
values are the same.  However, the vector value of re varies between zero and one; 
so its Cartesian and polar co-ordinate values are only the same when re = 1.    The 
argument r is stated as r= a +bi, (Cartesian) not r(cos θ +sin θ) (polar).  To work 
in c++ in polar co-ordinates, you must tell the computer you have switched from 
Cartesian to polar by using the argument: polar, not found in abq_alos.    

 
So the addition in abq_alos, found in the ITM 1.2.2, gives faulty results when re is 
not equal to 1.   

 
The usual arithmetic operators, including *, are overloaded, (in c++ - speak), for 
complex numbers (i.e. they work in complex numbers), so we can change the + to 
a * in the second call to abq_alos, and attempt to obtain more correct results 
using:   

 
  complex<double>(cos(q), sin(q))*r)  
 

This will correct the function to match the Algorithm, by changing it to multiply 
the reflection coefficient, r, by the phase exponent σ, and add the 1 in the 
equation, [Alg. 4.51], below, to the real term.  So, from abq_alos, we get:  
((cos(q)*r).real())2 + ((sin(q)*r).real())2 . 

 
Note the – sign in the r.imag term of abq_alos, ( – sin δ). In the ITM 1.2.2, this negative 
sign reverses the phase of δ, representing  the 180 degree phase shift (equivalent to 
adding a ½ wavelength to the reflected path length) found at the reflection point for 
horizontal polarity, and for vertical polarity below the pseudo-Brewster angle.  It does not 
function with the new version’s phase manipulation, and is therefore removed; we will 
accomplish this adjustment later. 
 

The maximum negative attenuation (ray additive combination) from this 
calculation would be -6.0 dB, and when the two rays are just enough out of phase 
for no additive gain, the result must be 0 dB.   Determining the depth of the null, 
however, is a problem.  In this case, a correct determination of Re*eiδ = 1 
represents a total cancellation of the direct ray (or wavefront) r1, so the actual 
attenuation would theoretically approach infinity (in dB). 

 
NOTE: In the old ITMDLL.cpp  c++ source code, the 1 in 1 + Re*eiδ is not in the 
ITMDLL.cpp v. 7 and previous c++ code; the – sign before the sin in the abq_alos 
function performed this task.  Remember that the range of Re is theoretically zero to one.  
A logarithm is, however, based on a ratio as an input, and the log of zero does not 
compute.  Also, to start at 0 dB, or no loss, we must start from 0 dB = log10(1/1).  So we 
add a 1.  Leaving it out, in front of a log conversion, is the equivalent of taking Re*eiδ   
and making it  (1/ Re*eiδ), converting the range of the logarithmic input ratio term from 1 
to 0, to be 1 to  approaching 1/0, (i.e.  1 to approaching infinity).  The old ITMDLL 1.2.2 



computer implementation imperfectly used this attribute to calculate the depth of the 
cancellation nulls.  We will also use, but also improve on, this manipulation. 
 

It functions by calculating -10 times the log10 (i.e. -4.343 times the natural 
logarithm, or log function) of   (Reeiδ)2.   In the old implementation, the value of 
eiδ is limited to below its normal range of zero to one, such that Re + eiδ cannot 
reach zero or become a negative number, neither of which the c++ log or log10 
functions can compute, and normally will not reach higher than one.  The range of  
Re*eiδ then became approximately 0.0000001 to 1, the modulus was 0.0000001 to 
1, and for a log of, say  0.0000001, the result was: -10*-7, (a.k.a. –4.343 * -
16.118) for an attenuation of 70 dB, reduced by the difference between the 
reflection coefficient and 1.0.  For a result approaching 1, the result was –10*0, or 
0 dB.  So it produced results with a range that, at first look, appeared correct, but 
were only correct when r approached a value of 1.   

   
Having removed the no longer functional negative sign from the second abs_alos 
calculation, it is necessary to restore the 1+  in [Alg. 4.51] prior to the logarithmic 
conversion. The squaring in the abs_alos function has removed the polarity sign 
from the Re function, so we must add a [1- ] to invert the function to represent the 
phase reversal at the reflection point. 

 
After cleaning up the calculations to match the Longley-Rice documentation, 
including removing the negative sign on the (sin δ),  and allowing the range of 
δ to now represent a full cycle of path wavelength difference on the two-ray 
calculation, it is found that, even corrected to match At =  -10 log10 |1 + Re*eiδ |,  
[Alg. 4.51], we still do not get good results.   

 
The range of eiδ is theoretically  zero to one, here with a zero representing a deep 
null cancellation of the direct ray, and a one, an additive solution creating a +6 db 
gain, the value depending upon the multiple-of-wavelength-related phase, or 
phase relationship, between the direct and reflected rays.  The range of Re is also 
zero to one, with a zero having no effect, i.e. resulting in a 0 dB result, and a one 
enabling maximum potential effect, depending upon the phase, eiδ.  The 
maximum combined range is therefore zero to one, with one representing an 
additive 6 dB of gain, a zero indicating a null, and a result of .707, equal to the sin 
of 45 degrees (p/4 radians), indicating no additive or canceling effect.  At first, we 
used an iteration to find what combination of multiplication factor and additive 
factor (adjustment of gain and bias) would cause the logarithmic function to 
produce a 0 dB result where the direct and reflected ray signals are just out of 
phase enough to combine with no apparent gain effect, and to produce a result of 
6 dB, when the two signals are in phase.  This calculation would then 
automatically produce the correct null depth when the two signals combine as out 
of phase as the complex impedances will allow.  

 
The result, of adding .765 and multiplying by .707, to the square root of (Re eiδ)2, 
the result of the second abs_alos calculation,  is shown on the Gain&Bias tab of 



the spreadsheet.  But it is interesting to note that the multiplying factor is equal to 
the value of sin at p/4 radians, equal to squaring the value.  So what happens if we 
iterate the multiplication and additive constant for (Re eiδ)2?  On the Gain&Bias 
tab of the spreadsheet, you can see the result; the multiplication factor is 2, and 
the bias constant is zero! 

 
Therefore, multiplying (1- Reeiδ)2 by 2 will give good results when Re is 1, or near 
1.  But as Re approaches 0, for example, near the pseudo-Brewster angle or where 
∆h is high, the result would approach 6 dB, not 0 dB.  By replacing the 2 with (1+ 
Re

2 ), when Re
2 approaches 0, the calculation will approach 1, therefore, 0 dB, as 

is correct.    
 

alosv is then set to be equal to At(d), the wavefront-tracing line of sight 
attenuation at a distance,  d.  Here,  ((cos(q)*r).real())2 + ((sin(q)*r).real())2 
represents (Reeiδ )2 , or the square of the  Reeiδ  term in the equation:    

 
  At =  -20 log10 |1 + Reeiδ |          [Alg. 4.51] 
 

The |1 + Re*eiδ | in the equation above, is the modulus of 1 + Re*eiδ.   A modulus is 
a defined term for taking the square root of the square of a complex number, 
equivalent to the abs, or absolute value function in c++.  Since the square of a 
negative number is a positive number, and a square root calculation primarily 
reports out only the positive result (there are two answers to a square root of x 
calculation; x1/2 and –x1/2), then the modulus is essentially the absolute value of 
the complex number.  In short, it eliminates the negative sign, if it had one.  Note 
that abq_alos squares the values of its input, performing the first half of the 
modulus function.  To perform the second half of the modulus function, the log 
function is multiplied by ½, which, when passed across the log function, takes the 
square root of (1+Reeiδ )2. 

 
So why is the log multiplication factor 10, instead of 5?  Re has been derived from 
formulas for optic reflection coefficients converted to electric field coefficients, 
i.e. voltage.  How do we convert a ratio to a logarithm with regards to voltage?  
By multiplying the result of the logarithm by 2*10 = 20, for voltage decibels, 
instead of 10, for power decibels. 

 
The 2 *10 on the left side of the log function shown in Alg. 4.51, at first does not 
appear to be reflected in the old ITMDLL.cpp code, and is not explained in the 
documentation.   The reason it is not visible is that it is cancelled out by the factor 
of ½ that takes the square root of (1+Re*eiδ )2.   

 
This equation is equivalent to the equation found in [ITS67 3.2], with 
modifications.   

 
The Re we have here, in the c++ ITM code, represented by r, has been modified 
upstream.  It became a complex number when calculated from Zg; we have 



corrected it to  “center” at 0.5, and have multiplied it by a exponential number 
that attenuates the maximum effect that can be obtained by the action of the 
reflected signal combining with the direct signal in a ray-tracing calculation, for 
this location in this example, given the frequency, terrain roughness, and grazing 
angle.  

 
So the line becomes: 

        alosv=(-10*log10(1- (abs( r ))*(1.0-(abq_alos(complex<double>(cos(q),sin(q))+r))); 
 

Then, on checking the spreadsheet, we find an interesting thing.  The value of r is 
equal to the computation of abq_alos(complex<double>(cos(q)*r)2 + ((sin(q)*r))2! 

 
What is happening?  Remember that the output of abq_alos is the square of the 
polar co-ordinate vector value of r, (using the pythegorian theorem, a2 +ib2 = r2), 
here correctly multiplied by the value of the phase function, which is, by 
trigonometric definition, (cosθ)2 + (sinθ)2 = 1.  So it is r * 1 = r, and only a part of 
the value we need; one we already have as r.  

 
We, and the original coders, have been misled by the use of exponential notation 
in:   

 At =  - 20log10 |1 + Reeiδ |           [Alg. 4.51] 
  

When a much clearer and correct rendition would have been:  
 
   At =  - 20log10 |1 + Re(cos δ) |  [Alg. 4.51 CORRECTED] 
 

With the understanding that Re represents the polar notation vector value already 
calculated as r, and that the result we need here is the “real” value of r along the 
polar “x” or “real value” co-ordinate line, described in polar notation as r(cos θ). 

 
However, we still want to make use of the logarithmic manipulation to calculate 
the null depths.  So we modify the second abq_alos call to provide us with just 
the squared polar vector “r” representation of the reflection coefficient.  R cannot 
exceed 1.0, and the square of 1.0 is 1.0, so we limit re; to avoid a “not-a-number” 
error from the log10 function attempting to compute the log10 of zero (1-1), we 
limit Re to equal a maximum of .9990, to eliminate rounding errors, and our c++ 
code line becomes: 

 
Line new:   
 re=abq_alos (r); 

re=mymax(0.999.0,re) 
alosv=-10*log10((1+ re)*(1.0-re*cos(q)*cos(q))); 

  
 
The results: For a recommended average terrain value of ∆h = 90 m., (as per the Guide, 
Table 2, page 8), a transmit effective height of 300 meters, and a receive height of 9 



meters, with the computations corrected, and with the ∆h(d) and s equations as provided 
in the ITMDLL.cpp, the resultant loss due to ray-path effects  is essentially zero out to 40 
km., before adjustment for when the direct ray clutter loss at low grazing angles starts to 
equal the reflection clutter loss.  Therefore, in most cases, it effectively exhibits almost 
no effect, and the original L-R code improperly relies on diffraction calculations to 
provide the main loss-in-addition-to-free-space effect in the line-of-sight range.  
 
We can verify this by setting the transmit effective height to 1200 meters, receive height 
to 10 meters, reflection height to 1 meter, frequency to 100 MHz, terrain roughness factor 
to the U.S. average of 90 meters, and distance to 20 meters.  Compare the results (zero 
dB ray-tracing loss past 40 km) with the 1200 meter curve on Figure 1 of the 
International Telecommunications Union Recommendation P.1546-2, (ITU-R P.1546-2) 
where we see a straight line, less than a dB below the free space loss line, extending from 
1 km to 20 km.  So ray-tracing effects and losses are primarily found over smooth, or 
nearly smooth earth, and through clutter at a distance.  Over average irregular terrain, and 
beyond free space loss, a different factor takes over as the primary cause of received 
signal loss.  We will refer to this as Clutter, which represents the loss due to absorption 
and scattering-to-absorption by the ground clutter layer, by absorption of signal by 
irregular terrain, and all other related sources of near-ground absorption (conversion to 
heat) of the signal.   
  

10.  The original Longley-Rice computer implementation, the ITMDLL.cpp, 
attempted to account for this loss by mixing in diffraction calculations performed 
at the horizon and at two points in the line of sight range, and adding these to the 
ray-tracing calculations in a weighted manner to create a curve calculation, which 
was then solved at the distance d. This is incorrect, and a discredited 
methodology.  Diffraction calculations are proper to use only at and beyond 
where the signal grazes the earth at a mutual horizon, or after an obstruction.    
 
For this corrected subroutine, these calculations have been replaced in the line of 
sight range using the line of sight equations from Shumate’s Approximations, as 
set of Clutter attenuation approximation equations deterministically derived from 
ITU-R P.1546-2 Figures 1, 9, and 17.  To do this, we call subroutine ssalos. 

 
The ITU-R P.1546-2 (P.1546-2)  Shumate’s Approximations equations require as  
input: 

 
 d path distance from transmitter to receiver, in kilometers. Input as d. 

h1 the transmitter antenna height in meters AGL, for which we use prop.tgh 
h2     the receiver antenna height in meters AGL, for which we use prop.he[1], 

the effective receive height 
f frequency in MHz, which we will calculate from the wave number, 

obtained from prop.wn 
pol polarity of transmitted signal, (0=h, 1=v, 2=cp), derived from input pol, 

obtained as prop.ptx  
 



and preset coefficient values: 
CH  clutter height, the average clutter canopy top height in meters. For 

compatibility of the results with (P.1546-2), use 25.3 meters as input 
clutter_height.  Arrives at saalos as prop.cch.  

ηs  reflectivity coefficient of the atmosphere near the surface of the ground 
(substituted for the value near the top of the clutter canopy).  Obtained as 
prop.ens, from ITM input eno_ns_surfref.  Customary value:  301 N-units. 

ηcc reflectivity coefficient of the average clutter layer at the canopy top, as 
derived from (P.1546-2). Obtained as prop.encc, from new ITWOM input 
encc_ncc_clcref.  Customary value: 1000 N-units.   

 
 
 

11.   
The transmitter height AGL is set for saalos with prop.tgh=prop.hg[0], and then 

an if statement is initiated; if prop.dh, the delta h terrain irregularity factor is greater than 
15.3 meters, and if prop.hg[1], the receiver height AGL, is less than the clutter canopy 
height, then:   

 
subroutine saalos is called with inputs: 

double d  
  prop_type & prop  array with constants, including: 
   prop.tgh[0] 
   prop.hg[1] 
   prop.wn 
   prop.ptx 
   prop.ens 
   prop.encc 
   prop.cch   
  
  prop_type & propa 
 

And returns saalosv, the Radiative Transfer Engine attenuation from clutter, 
which is loaded into alsov, replacing the resulting attenuation from the two-ray 
computations with results from the RTE approximations:  

 
New line:  alosv=saalos(d, prop, propa); 

   
12. The subroutine ends; the result, alosv, representing the additional attenuation due 

to line of sight losses in addition to the free space loss, is returned to the calling 
subroutine, lrprop:   

 
Line new:  return alsov; 
 } 



SUBROUTINE ASCAT: A functional explanation, by Sid Shumate.   
 
Last Revised: July 14, 2007. 
 
Attenuation from Scatter subroutine, Ascat. 
 
Note: Used with both point-to-point and area modes.  Called by lrprop. Calls mymin, 
mymax, h0f, and ahd. 
 
Descriptions derived from the Irregular Terrain Model description by George Hufford, 
2002, (ITMD), compared to the ITM.cpp prepared by J. D. McDonald and John 
Magliacane for compilation on unix and linux systems.  “Line” numbers refer to the 
ITM.cpp as line numbered by Bloodshed Software’s DevC++ print function.  “Alg” 
numbers refer to the algorithm formula in “The ITS Irregular Terrain Model, version 
1.22, the Algorithm” by G. A. Hufford, 1995 (the Algorithm).  “ITS67” numbers refer to 
the algorithm formulas in “ESSA Technical Report ERL 79-ITS 67, Prediction of 
Tropospheric Radio Transmission Over Irregular Terrain, A Computer Method – 1968” 
by A.G.Longley and P.L.Rice. “TN101” numbers refer to the formulas in “National 
Bureau of Standards Technical Note 101; Transmission Loss Predictions for 
Tropospheric Communications Circuits, Volumes I and II,” as revised January 1, 1967. 
(NBS TN101, or TN101). 
 
From ITMD Sections 22, 23, and 24:      
 
The function ascat finds the “scatter attenuation” for the path distance d.   It uses an 
approximation to the methods of NBS TN101 with checks for inadmissible situations.  
For proper operation, the larger distance  (d = d6  must be the first called.  A call with d = 
0. sets up initial constants.  
 
From the Algorithm, Section 4.3.1: 
 
Computation of this function uses an abbreviated version of the methods described in 
Section 9 and Annex III.5 of NBS Tech Note 101. 
 
Note: THIS SUBROUTINE IS ELIGIBLE FOR UPDATE AND REVISION: On page 
11 of the Algorithm, last paragraph, George Hufford stated:  
 
 “A difficulty with the present model is that there is not sufficient geometric data 
in the input variables to determine where the crossover point is.   This is resolved by 
assuming it to be midway between the two horizons.”   
 
This statement and concept should be reviewed to determine if the “sheer magnitude” of 
data available in today’s terrain databases is adequate to implement a more accurate 
geometric determination of the crossover point. 
 
For now, here is how the current version of the ITM.cpp works: 



 

Note:  Not defined in the Algorithm section 4.3.1 below, the k in [Alg. 4.62] is the wave 
number, which is equal to the frequency in MHz divided by 47.7. 
 
 
From the Algorithm, with clarifications: 
 
“First, set: 
  θ = θe +γe

s       [Alg. 4.60]  
  θ’ = θe1 +θe2 + γe

s      [Alg. 4.61] 
  rj  = 2 * k  *θ’ * hej          for  j = 1, 2.   [Alg. 4.62] 
 

If both r1  and  r2  are less than 0.2, the function Ascat is not defined, (or is infinite).   
 

Otherwise, we put    
 
 Ascat(s)  = 10 * log(k*H*θ4 )  +  F (θs , Ns ) + H0  (4.63), i.e. [Alg. 4.63] 
 
Where F (θs , Ns ) is the function shown in Figure 9.1 of Tech Note 101, H0 is the 
“frequency gain function”, and H is 47.7 meters.   
 
The frequency gain function H0 .is a function of: 
 

r1 , defined in {Alg. 4.62] 
  r2,  defined in {Alg. 4.62] 

ηs, the scatter efficiency factor, and  
the “asymmetry factor”, which we shall here call ss.   

 
A difficulty with the present model is that there is not sufficient geometric data in the 
input variables to determine where the crossover point is.   This is resolved by assuming 
it to be midway between the two horizons   The asymmetry factor, for example, is found 
by first defining the distance between horizons 
 
   ds = s − dL1 − dL2     [Alg. 4.64]   
 
whereupon 
   ss  =  (dL2 + ds /2) / (dL1 + ds /2)   [Alg. 4.65]   
 
There then follows that the height of the crossover point is 
 
   z0 = (ss * d * θ’ ) / ( 1 + ss )2     [Alg. 4.66] 
 
[Ed. where   
 d is the total path distance 

θ’ is the angular distance, defined in [Alg. 4.61], a.k.a.θoo, as shown on Figure 6.1 
of TN101 on page 6 – 8.] 



 
and then  
 
 ηs  = ( z0 / Z0 ) * [ 1 + (0.0.031 − Ns  * 2.32 * 10−3 + Ns

2
  * 5.67 * 10−6 )e−( z0 / Z1)^6 ] 

 
        (4.67), i.e. [Alg. 4.67] 
where 

 
Z0  = 1.756 km or 1756 meters  
Z1 =  8.0 km or 8000 meters 

 [ Ed. (and Ns is the surface refractivity of the atmosphere, a.k.a ens or  prop.ens)] 
 
The computation of  H0  then proceeds according to the rules in Section 9.3 and Figure 
9.3 of Tech Note 101.  
 
The model requires these results at the two distances s = d5, d6 described above.  One 
further precaution is taken to prevent anomalous results.  If, at d5, calculations show that 
H0 will exceed 15 dB, they are replaced by the value it has at d6. This helps keep the 
scatter mode slope within reasonable bounds.”  
 
 
Discussion: 
 
TN101 defines “launch angles” for the signal path line as it leaves the transmit antenna 
toward the receive antenna, and from the receive antenna as received from the transmit 
antenna.  These launch angles are defined in Section 6.4 of TN101, and are designated as 
θet, the angular elevation of the transmit horizon ray, and θer, the angular elevation of the 
receive horizon ray.  They are shown on Figure 6.1 of TN101. They are calculated in 
subroutine hzns and provided to ascat as values stored in prop.the[0] and prop.the[1].   
 
The equation [Alg. 4.60] can be confusing here, due to its poorly defined use of θ.  Alg. 
4.60 is attempting to explain that in the general case, a launch angle must be adjusted for 
the earth’s curvature; and is easier to understand if we give examples: 
 
   θt = θet +γet

s     [Alg. 4.60a]  
   θr = θer +γer

s     [Alg. 4.60a] 
 
 where 
  θet is the transmit site launch angle as shown on TN101 Figure 6.1. 
  θer is the receive site launch angle as shown on TN101 Figure 6.1. 
  s is either the asymmetry factor, or a distance 

at the terminals, γe(t,r)
s  = dL(t,r) / a  =  dL(t,r) * gme, 

 where  
dLt is the distance from the transmit site to the horizon or obstacle, in 
meters.  



dLr is the distance from the receive site to the horizon or obstacle, in 
meters. 
gme is the earths curvature, equal to 1/a where a is the effective earths 
radius shown in Figure 6.1 of TN101.  Here, a is in meters, so gme is in 
1/meters. 
 

In TN101, the angular distance θ  is defined as:  
  

θ = θοο  = d / a  + θet + θer    [TN101 6.14] 
 

 where, as described in section 6.4 and on diagram 6.1 of NBS TN101; 
d is the total path distance as shown on figure 6.1 
a is the effective earth’s radius, equal to 1/gme, the effective earth’s curvature.. 
θet is the angle between the horizontal, at the transmitter site, and a line between 
the transmit antenna and the horizon (or the top of the obstruction).  This is the 
value stored in prop.the[0]. 
θer is the angle between the horizontal, at the receive site, and a line between the 
receive antenna and the horizon (or the top of the obstruction).  This is the value 
stored in prop.the[1]. 

 
In [Alg. 4.61], we again find γe

s replacing the d/a term in [TN101 6.14]. 
 
 

The angular distance θοο is the angle, as shown on diagram 6.1 of NBS TN101, between a 
line starting from the transmit antenna and touching the transmit horizon or the top of the 
receive obstacle, and a line starting from the receive antenna and touching the receive 
horizon or the top of the receive obstacle.  
  
TN101 also defines “launch angles” for the signal path line as it grazes the horizon, (or 
crosses the top of the obstacles).  These launch angles, or angular elevation of a horizon 
ray, are defined as the angle between the horizontal at the horizon (or obstacle), and the 
signal path line grazing the horizon (or touching the top of the obstacle), and in TN101 
are designated as θot, the angular elevation of the transmit horizon ray, and θor, the 
angular elevation of the receive horizon ray, as shown on Figure 6.1 of TN101.  These 
are calculated using:  
 
  θot =  θet + dLt/a θor =  θer + dLr/a   [TN101 6.16]  
 
 where  

d is the total path distance as shown on figure 6.1, and input to ascat as 
input d 
θet is the angle between the horizontal, at the transmitter site, and a line 
between the transmit antenna and the horizon (or the top of the 
obstruction).  This is the value stored in prop.the[0]. 



θer is the angle between the horizontal, at the receive site, and a line 
between the receive antenna and the horizon (or the top of the 
obstruction).  This is the value stored in prop.the[1]. 
dLt is the distance from the transmit site to the horizon or obstruction, 
stored in prop.dl[0]. 
dLr is the distance from the receive site to the horizon or obstruction stored 
in prop.dl[1]. 
a is the effective earth’s radius, equal to 1/gme, the effective earth’s 
curvature, the value of which is stored in prop.gme. 

 
If the earth is smooth, θ is approximately equal to Ds/a,  

where: 
  “a”     is the effective earth’s radius (equal to 1/gme), and; 
  Ds  (a.k.a. ds in the code) is the distance between the transmitter site 

horizon (or obstacle) location, and the receive site horizon (or 
obstacle) location.  

 
 and where: Ds = d − dLt − dLr    [TN101 6.17] 

 
 
In order to properly calculate tropospheric scatter losses, Longley-Rice generates a “path 
asymmetry factor, identified in NBS TN101 as “s”.  In order to do this, TN101 starts by 
defining the angles αoo and βoo.  On page 6.8 of TN101, Volume I, Figure 6.1 shows a 
graphic representation of the two angles.  αoo is the angle at the transmit site between a 
line drawn from the transmit antenna and grazing the horizon or tallest visible obstacle, 
and a theoretical line drawn directly from the transmit antenna to the receive antenna 
(passing through the earth for a beyond-the-horizon path).  βoo is the same angle from the 
point of view of the receive antenna. 
 
In NBS TN101, for the general case of irregular terrain, the angles αoo and βoo are 
calculated using: 
 
  αoo =  (d /2 * a)  + θet  + (hts − hrs)/ d   [TN101 6.18a] 
 

βoo  =  (d /2 * a)  + θer  + (hrs − hts)/ d   [TN101 6.18b] 
 
 where:  

 d is the total path distance as shown on figure 6.1, and input as d 
a is the effective earth’s radius, equal to 1/gme, the effective earth’s 
curvature, the value of which is stored in prop.gme. 
θet is the angle between the horizontal, at the transmitter site, and a line 
between the transmit antenna and the horizon (or the top of the 
obstruction).  This is the value stored in prop.the[0]. 
θer is the angle between the horizontal, at the receive site, and a line 
between the receive antenna and the horizon (or the top of the 
obstruction).  This is the value stored in prop.the[1]. 



  hts is the transmit site antenna elevation, stored in prop.he[0] 
hrs is the receive site antenna elevation, stored in prop.he[1]. 

 
 
These angles are positive for beyond-horizon paths.  To allow for the effects of a non-
linear refractivity gradient, αoo and βoo are modified by corrections ∆αo and ∆βo
 

where:  
  αo is defined as αoo + ∆αo       [TN 6.19a]  

and  
βo is defined as βoo + ∆βo      [ TN 6.19b]  

 
To give the angles αo and βo, whose sum is the angular distance theta, θ , and whose ratio 
defines a path asymmetry factor “s”. 

 
θ =  αo + βo        s =  αo  / βo   [TN 6.19c] 

 
 
The corrections ∆αo and ∆βo  are functions of  the angles θot and θor , (see [TN 6.16], and 
of the distances dst  and dsr  from each horizon obstacle to the point where the horizon 
rays cross over.  These distances are approximated as:  
 
 dst  =  d (βoo / θoo) − dLt  ,  dsr  =  d (αoo / θoo) − dLr   [TN 6.20] 
 
 
The sum of  distances dst  and dsr  is the distance Ds between horizon obstacles, defined by 
[TN 6.17].  Over a smooth earth, dst  = dsr  =  Ds.  
 
For small θot or θor , no correction ∆αo or ∆βo is required for values of dst or dsr less than 
100,000 meters.  When both ∆αo or ∆βo are negligible;   
 
  θ  =  θoo =  αoo + βoo      [TN101  6.22] 
 
which is the same as [TN101 6.14], i.e.: 
 

θ  =  θoo =  αoo + βoo = d / a  + θet + θer  [TN101 6.14 with 6.22] 
 
If either θot or θor is negative, indicating an obstruction taller than the terminal height, 
then compute:  
  
 d’st  =   dst − | α * θot |     or   d’sr  =   dsr − | α * θor |   [TN101 6.23] 
   
substitute d’st for dst or d’sr for dsr, and read figure 6.9, on page 6-16 of TN101, using θot = 
0 or θot = 0. [needless to say; the compeuter code cannot do this without using an 
approximation. 



 
If either θot or θor is greather than 0.1 radian and less than 0.9 radian, determine  
∆αo or ∆βo for θot  = 0.1 radian and add the additional correction term 
 
 Ns (9.97 −  cot θ ot,r ) [ 1 − exp ( − 0.05 * dst,r) ] *  10−6  radians   
 
The bending of radio rays elevated more than 0.9 radian above the horizon and passing 
all the way through the atmosphere is less than 0.0004 radian, and may be neglected. 
 
 
Referring to the information obtained from the Algorithm above: 
 
The equation for ηs, the scatter efficiency factor, given in [Alg. 4.67], is derived from an 
equation in TN101: 
 
ηs  = 0.5696* ho*[1+ (0.0.031−Ns *2.32*10−3+5.67*Ns

2 *10−6)exp(−3.8 * ho
6 *10−6)] 

 [TN101 9.3a]: 
where  

z0 is represented by ho  
Z0, stated as 1,756 meters in the Algorithm, is replaced by 1.7556 kilometers, so 
1/1.7556 = 0.5696;  
Z1 =  8.0 km or 8000 meters, and [1/(8.0)]6 =  (.125) 6  =  3.8 

 
 
Call inputs:   
 
d  the total path distance 
Prop_type 
&prop  array with elements 
propa_type 
&propa array with elements 
 
defines private, or local, arguments:  
 
Note: The following four arguments are static doubles: 
ad absolute value of the difference in distance between: the distance from the 

transmit site to the horizon, and the distance from the receive site to the horizon. 
rr ratio of the higher terminal’s effective height, (transmit or receive site antenna) to 

the lower terminal’s effective height 
etq  a term in the equation for ηs    
h0s frequency gain function for (s) smooth earth 
 
h0 frequency gain function 
r1 transmit site angle calculated in [Alg. 4.62] 
r2 receive site angle calculated in [Alg. 4.62] 



z0 the height of the crossover point of the horizon or obstacle grazing lines from the 
terminal antennas, above a line drawn between the two terminal antennas 

ss a.k.a. ss  the “asymmetry factor” 
et  
ett  
th a.k.a. theta prime, or θ’, the combined launch angle calculated in [Alg. 4.61] 
q  
 
 
In this subroutine: 
 

1. An if statement is initiated to prepare the initial scatter constants; if d is equal 
to zero, then: 

a. ad is set to be equal to the difference in distance, in meters, between: 
the distance from the transmit site to the horizon, prop.dl[0], and the 
distance from the receive site to the horizon, prop.dl[1].   

 
b. rr is set to be equal to the effective height of the transmit antenna, 

prop.he[0], in meters, divided by the effective height of the receive 
antenna, prop.he[1], in meters.  At this moment, the argument rr 
represents the ratio of the transmit antenna effective height to the 
receive antenna effective height.   

 
Line 282: if (d= =0.0) 
  { 
   ad=prop.dl[0]−prop.dl[1]; 
   rr=prop.he[1]/prop.he[0]; 
  

2.  A second if statement is initiated, nested within the first; so if d is equal to 
zero, and if ad is less than zero, then: 

a.  ad is made equal to −ad; as a result, the always positive resulting 
value stored in ad will represent the difference between the distances 
to the horizon from the transmit site and the receive site, measured in 
meters. 

b. rr is inverted, i.e. made equal to 1/rr. The argument rr then represents 
the dimensionless, and always positive, ratio of the higher terminal’s 
effective height, (transmit or receive site antenna) to the lower 
terminal’s effective height.   

 
Line 287: if (ad<0.0) 

  { 
   ad=-ad; 
   rr=1.0/rr; 
  } 
   

3. The subroutine then continues under the first if statement, if d=0, to: 



a. Set etq equal to [(5.67e−6∗prop.ens−2.32e−3)*prop.ens+0.031].  
 

What is this for?  from: [Alg. 4.67]:  
ηs  = ( z0 / Z0 ) * [ 1 + (0.0.031 − Ns  * 2.32 * 10−3 + Ns

2
  * 5.67 * 10−6 )e−( z0 / Z1)^6 ];  

from this equation, we take the term: (0.0.031 − Ns  * 2.32 * 10−3 + Ns
2

  * 5.67 * 10−6 ); 
re-ordering the term, we get: [(5.67 * 10−6 *  Ns − 2.32 * 10−3 )* Ns + 0.0.031]; 
replacing Ns, the surface refractivity of the atmosphere, with the value of Ns a.k.a. ens, 
stored in prop.ens, we get: [(5.67e−6∗prop.ens−2.32e−3)*prop.ens+0.031].  This term is 
later used to calculate the value for argument et , a.k.a. ηs, at line 321.  

 
NOTE: There is a QUIRK here, AS etq, a static double argument, ONLY GETS 
CALCULATED IF D == 0.  LRPROP does call ASCAT first with d = 0, at line 808, 
before calling with d = d6 and d5. 

 
b. Set h0s, a.k.a. H0(s), or the H0 frequency gain function over (s), 

smooth earth, equal to: –15. 
c. Set ascatv equal to 0.0.  

 
Line 293: etq=(5.67e-6*prop.ens-2.32e-3)*prop.ens+0.031; 
  h0s=-15.0; 
  ascatv=0.0; 
 
If at line 282, d was equal to zero, the program here jumps to line 345, and the program 
ends by returning a value of 0.0 for ascatv.     
 
If at line 282, d was not equal to zero, the program ignores lines 282 to 297, and proceeds 
to line 298, where:   
  

4. An else statement follows, and its action affects line 300 to 343.   
If d is not equal to zero, then the program proceeds to an if statement nested 
within the else statement.  If h0s is greater than 15, then h0 is set to be equal 
to h0s.  

 
Line 298:  else 
       { 
  if (h0s>15.0) 
   h0=h0s; 
 
QUESTION: h0s is a static double type argument; is its value retained when the 
subroutine is not online?  Does it come from the calling routine lrprop?  Need to 
determine the source of this value.  Unless d=0, there is no value preset for h0s.   

 
5. A second else statement at line 302, nested within the first else statement, 

provides an alternate path to the if statement nested within the first else 
statement. This else statement affects lines 304 to 338. So if d is not equal to 
zero, and if h0s is less than or equal to 15, then:  



  
a. th,(a..k.a.theta, or in TN101 θοο, or in the Algorithm, θ’, theta prime), 

the angular distance,  is set to be equal to:  
 

prop.the[0]+prop.the[1]+d*prop.gme; [Alg.4.61] or [TN101 6.14] 
 

where 
 prop.the[0] is the launch angle from the transmit antenna 

prop.the[1] is the launch angle from the receive antenna 
d  is the total path distance 
prop.gme is the effective earth’s curvature, which is equal to 1/a, 
where a is the effective earth’s radius 

  
b. r2 is set to be equal to 2 * prop.wn * th;  this is a part of [Alg 4.62), in 

that r2 is momentarily set to be equal to the term 2 * k * θ’,  
where:  

prop.wn, is the wave number, k, equal to the frequency in 
MHz divided by 47.7, as defined in [Alg. 1.1] ;    
th is θ’, or theta prime, the angular distance calculated in 
step a. above, as per [Alg.4.61].  

 
c. r1 is set to be equal to r2 * prop.he[0];  calculated as per [Alg. 4.62]. 
 

where 
      r2 was determined in step b. above 

prop.he[0] is the effective height of the transmit site antenna (in 
meters) 

  
d. r2 is then reset to be equal to the value of r2 from step b. above, 

multiplied by the value of prop.he[1], the effective height of the 
receive antenna.  At this point, r1 and r2 have been calculated as per 
[Alg. 4.61].  

   
This comes from the equations for the Frequency Gain Function, Ho, in Section 9.2 of 
TN101.  On page 9–3 of TN101, the parameters r1 and r2 are defined as:  
 

r1 = 4 * π  ∗ θ  * hte,/λ     and r2  =  4 * π  ∗ θ  * hre,/λ    [TN101 9.4b] 
 

In TN101, Section 9.2, the dimensions can be said to be either meters or kilometers for 
the wavelength λ, and for the effective antenna heights, hte, and hre, as long as all are 
specified in either meters or kilometers; these units of measure cancel out.    The angular 
distance θ is specified in radians in TN101 and in the Algorithm.  This is not true in the 
code.  Radians, in mathematics, are usually assumed to be the standard unit of angular 
measure, so the unit “rad” is customarily omitted, contributing to the confusion in 
attempting to study Longley Rice as it translates from TN101 to the computer code.  In 
the ITM FORTRAN and c++ code, the angular distance θ  is specified in a unique ratio; 



the ratio of vertical distance change to horizontal distance change.  The units must cancel 
out (both the numerator and denominator must be specified in the same units).  The 
change in units for θ is not the only difference in r1 and r2.  In the equation for r used in 
the code, the wave number is used instead of the wavelength.  
 
The Algorithm, defines the wave number to be that of the carrier or central frequency.  It 
is defined to be:  
 
 k =  (2 * π /λ )  =  f /  fo     with  fo  =  47.70 MHz * meters.  [Alg. 1.1]   
 
Resorting r1 and r2 , we get: 
 

r1 = 2 ∗ θ  * hte* (2 * π /λ )    and r2  =  2 * θ  * hre * (2 * π /λ) [TN101 9.4b] 
 

Replacing the term  (2 * π /λ ) with k:  
 

r1 = 2 ∗ θ  * hte*  k     and r2  =  2 * θ  * hre * k , which is the same as [Alg. 4.62]  
 
The distance units, if all in meters, cancel out.  So we have now successfully converted 
from wavelength to wave number.  But in the equation [Alg. 4.62], in Section 4.3.1, “The 
Function Ascat.” the angular distance θ is still being specified in radians, as becomes clear 
in Section 6, equations [Alg 6.13 and 6.14}.   
 
How do we convert θ, a.k.a. th, to radians?   There are 2π radians in a full cycle, or 360o.  
A radian is defined as the angle subtended at the center of a circle by an arc of 
circumference that is equal in length to the radius of the circle.  Draw this construct on a 
circle, with one radii of length r on the horizontal plane, and a distance of r on the 
circumference between the two radii.  Now draw a vertical line from the point where the 
non-horizontal radii touches the circumference of the circle, to a point perpendicular to 
the horizontal radii, forming a right triangle. The radius then becomes the hypotenuse of a 
right triangle with an angle, subtended at the center of the circle, between the two radii, 
of one radian, or 57.2958 degrees.  The length of the vertical line is then equal to the sine 
function of the angle θ, which is equal to the ratio of the length of the vertical line to the 
length of the hypotenuse of the triangle, which is equal to r.  So we can now obtain the 
length of the vertical line by multiplying sin θ by the hypotenuse length, r. This results in 
the equation: 
    V = (sin θ) * r   
 
The length of the horizontal line is then equal to the cosine function of the angle θ, which 
is equal to the ratio of the length horizontal line of the triangle to the length of the 
hypotenuse of the triangle, which is equal to r.  So we can obtain the length of the 
horizontal line by multiplying cos θ by the hypotenuse length, r. This results in the 
equation: 
    H = (cos θ) * r   
 



We can now obtain the ratio of the vertical length to the horizontal length by dividing the 
equation for Y by the equation for X. and canceling out the “r” terms:  
 
   V/H = [(sin  θ) * r] / [ (cos θ) * r ]  =  (sin θ)/(cos θ)  
 
In trigonometry, by definition of the tangent function, tan x =  (sin x) / (cos x), so the 
equation becomes:  
 
   V/H =  (tan θ) in radians 
 
This can be used to convert from the angle in radians or degrees, to the ratio used for θ 
in the code, but we also need to know how to convert from the vertical-distance-to- 
horizontal-distance ratio (V/H ratio) used for th, to radians, in case we later run into a 
formula that cannot handle the V/H ratio.  For this we use the arctan subroutine function:   
 
   arctan (V/H) = θ in radians (rads) 
 
We will need these conversion factors later in the subroutine, and in subroutine h0f when 
we call it. 
 
Line 298:  else 
  { 

 th=prop.the[0]+prop.the[1]+d*prop.gme; 
   r2=2.0*prop.wn*th; 
   r1=r2*prop.he[0]; 
   r2*=prop.he[1]; 
 

6. An if statement is nested in the else statement at this point. If r1 is less than 
0.2 and if r2 is less than 0.2, then the function Ascat is not defined, (or is 
infinite), and the subroutine returns 1001.0 as the value of ascatv. The 
subroutine ends early, and returns to the calling subroutine, lrprop. 

 
Line 309:   if (r1<0.2 && r2<0.2) 
  return 1001.0;  // <==== early return 
 
NOTE: Is there an else statement missing on line 311? Or does stating “return” get the 
job done? 
    

7. If r1 is equal to or more than 0.2, or if r2 is equal to or more than 0.2, the 
program continues under the else statement, and: 

 
a. ss, a.k.a. ss the “asymmetry factor” over smooth earth, is set to be 

equal to: 
=(d-ad)/(d+ad); 
 

       where:  



   d is the total path distance 
ad is the absolute value of the difference between the distances 

to the horizon from the transmit site and the receive site, 
measured in meters. 

 
Which at first glance, appears to bear no relationship to the equations described in the 
Algorithm. However, In the Algorithm, the asymmetry factor is found by first defining 
the distance between horizons 
 
   ds = s − dL1 − dL2   [Alg. 4.64] also [TN101 6.17]   
 
From TN101, page 6-6, it states: 
 
 “The sum of dst and dsr, the distances from each horizon obstacle to the crossover 
of horizon rays, is the distance Ds (this Ds is the same as ds in the Algorithm and c++ 
code).  Over a smooth earth dst  = dsr  = Ds / 2.   
 
The Algorithm states: “A difficulty with the present model is that there is not sufficient 
geometric data in the input variables to determine where the crossover point is.   This is 
resolved by assuming it to be midway between the two horizons.”   Therefore,  from this 
assumption, ds /2 is equal to the distance from each horizon to the crossover point. 
 
whereupon 
   ss  =  (dL2 + ds /2) / (dL1 + ds /2)   [Alg. 4.65]   
 where:   
  dL2 is the distance from the receive site to the horizon 
  dL1  is the distance from the transmit site to the horizon 

ds is the distance between  the transmit horizon and the receive 
horizon 

 
And,    ds   =  d −  dL2 −  dL1,  the same as:  [Alg. 4.64] also [TN101 6.17]   
 
Or, restated; d, the total path distance, equals the sum of  dL2 + dL1 + ds  
 
Therefore, dL2 = −  dL1 −  ds + d, and dL1 = −  dL2 −  ds + d, 
 
So, substituting into [Alg. 4.65] we get: 
 

  ss  =  (− dL1 −  ds + d + ds /2) / (−  dL2 −  ds + d + ds /2)      
 
by reordering:   ss  =  (d − dL1 −  ds + ds /2) / ( d −  dL2 −  ds + ds /2) 
by consolidating: ss  =  (d − dL1 −  ds /2) / ( d −  dL2 −  ds /2) 
by multiplying both the numerator and denominator by 2: 

ss  =  (2d − 2dL1 −  ds) / ( 2d − 2 dL2 −  ds) 
and substituting  d −  dL2 −  dL1  for  ds 

ss  =  (2d − 2dL1 −  d + dL2 + dL1) / ( 2d − 2 dL2 −  d + dL2 + dL1)



by consolidating: ss  =  (d − dL1  + dL2 ) / ( d −  dL2  + dL1)
by reordering:   ss  =  [d − (dL1 − dL2 )]/ [d + ( dL1 − dL2  )] 
 
Since ad has been made equal to the absolute value of  prop.dl[0]−prop.dl[1], where 
prop.dl[0] =  dL1 , and   prop.dl[1] = dL2 , then the value of ad is equal to the term 
(dL1 − dL2), and equations [ Alg. 4.64 and 4.65] merge to create: 

 
ss  =  [d − (ad)]/ [d + (ad )] 

 
Therefore the value of ss, which represents ss the “asymmetry factor” over smooth earth, 
is set to be equal to: (d-ad)/(d+ad). 
 
An interesting point here is that ad at this point has been set to be the absolute value of ad 
in step 2 above.  This refers to the procedure mentioned in the last paragraph on page 6-7 
of TN101, where it states:   
 
 “Many of the graphs in this a subsequent sections assume that s is < 1 (Ed. here 
TN101 is referring to “s” as the “asymmetry factor). It is therefore convenient, since the 
transmission loss is independent of the actual direction of transmission, to denote as the 
transmitting antenna whichever antenna will make s less than or equal to unity.” 
 
By using the absolute, or always positive, value of ad, we make sure that ss will be less 
than 1, as the numerator will always be smaller than the denominator. 
 
Line 312:   ss=(d-ad)/(d+ad); 
 
  

b. in the next step, q is set to be equal to the ratio of rr/ss, where: 
The argument rr represents the dimensionless, and absolute, (i.e. 
always positive), ratio of the higher terminal’s effective height above 
ground level, (transmit or receive site antenna) to the lower terminal’s 
effective height above ground level.  
ss is the asymmetry factor over smooth earth.  

 
Line 313:  q=rr/ss; 
  

c.  the value of ss ( a..k.a. ss ), the asymmetry factor, is then set to be no 
less than 0.1; 

 
Line 314:  ss=mymax(0.1,ss); 
 
In section 9.2 of TN101, “The Frequency Gain Function, Ho “ it states:  
 
 “For the great majority of transhorizon paths, s is within the range 0.7 < s < 1. 
The effect of very small values of s, with αo << βo, may be seen in figures III.15 to III.19, 



which have been computed for the special case where effective transmitting and receiving 
antenna heights are equal.” 
 
The effect shown in these charts is that s (or for smooth earth, ss or ss),  has a minor 
effect for  0.7 < s < 1.  There is a greater effect as s becomes lower in value, i.e. as the 
asymmetry increases.  The above action limits the maximum effect to be that obtained at 
an asymmetry ratio of 10 to 1, i.e. s = 0.1. 
 

d. The value of q represents the ratio of the dimensionless, and absolute, 
(i.e. always positive), ratio of the higher terminal’s effective height 
above ground level, (transmit or receive site antenna) to the lower 
terminal’s effective height above ground level, divided by ss, the 
asymmetry factor over smooth earth (whose range has not yet been 
limited, and has been set to always be a positive value).  Here, the 
range of q is limited, so that the value of q can be no less than 0.1, and 
no more than 10.0.   

 
Line 315:   q=mymin(mymax(0.1,q),10.0); 
 

e. z0, the height of the crossover point, is calculated.  The Algorithm 
states:   

“There then follows that the height of the crossover point is: 
 

z0 =( ss * d * θ’)/(1 + ss)2          [Alg. 4.66]” 
where 
    ss is the asymmetry factor for smooth earth, = ss 

d is the total path distance, in kilometers 
θ’ is theta prime, the angular distance; = th 

 
A form of this equation is also found in [TN101 9.3b], where units are in kilometers. 
 
However, this leaves out a lot of explanation.  From TN101 Section 9.2, where z0 is 
referred to as ho, it is defined as the height of the crossover point as referenced to a direct 
line drawn between the transmit antenna and the receive antenna, not with reference to 
sea level or ground level.  A visual depiction of ho is shown in Figure 6.1 on page 6 – 8.  
In TN101, it is utilized in calculating Ho, the “frequency gain function”. 
   
Here, the code calculates z0 to be equal to: (d-ad)*(d+ad)*th*0.25/d. How did the 
Irregular Terrain Model code writers get to this equation for z0, starting from [TN 101 
9.3b] and [Alg. 4.66]?    
 
First, we re-order Alg. 4.66;  
 z0 =(ss* d * θ’)/(1 + ss)2 =  (θ’ * d* ss) *1/(1 + ss)2 [TN 101 9.3b] and [Alg. 4.66] 
 
Then multiply both sides by (1 + ss ): 

 



z0 * (1 + ss ) = θ’ * d* ss *[1/(1 + ss)] 
 

and then substitute the equation for ss, a.k.a. ss the “asymmetry factor” over smooth earth, 
ss = (d-ad)/(d+ad), derived and used in Step 7 (a.) above, for the three ss terms: 

 
z0 * (1 + (d-ad)/(d+ad)) = θ’ * d* (d-ad)/(d+ad)*[1/(1 + (d-ad)/(d+ad))] 

 
multiplying out the terms in the left hand side of the equation, and reordering the terms in 
the right hand side of the equation: 

 
(z0 + z0 * (d-ad)/(d+ad)) = θ’ * d*[(d-ad)/(d+ad)]*[1/(1 + (d-ad)/(d+ad))] 

 
recombining the numerator in the right hand side of the equation: 

  
(z0 + z0 * (d-ad)/(d+ad)) = θ’ * d* (d-ad)/[(d+ad)*(1 + (d-ad)/(d+ad))] 
 

multiplying out the terms in the numerator in the right hand side of the equation: 
 
(z0 + z0 * (d-ad)/(d+ad)) = θ’ * d* (d-ad)/[(d+ad) + (d-ad)*(d+ad)/(d+ad))] 
 

the term (d+ad)/(d+ad) in the right hand side denominator equals 1 (cancels out), and by 
adding up the terms in the right hand side denominator, we get: 
 

(z0 + z0 * (d-ad)/(d+ad)) = θ’* d* (d-ad)/(d + d + ad − ad) = θ’* (d-ad)* d /2d 
 

since d/d = 1, the d /2d term in the right hand side denominator equals ½, so: 
 

(z0 + z0 * (d-ad)/(d+ad)) = θ’* (d-ad)* (1/2) 
 

by multiplying both sides of the equation by the term (d+ad), we get:  
 
z0* (d+ad) + z0 * (d-ad) * [(d+ad)/(d+ad)]  =  θ’* (d-ad)* (d+ad) /2 
 

the term (d+ad) /(d+ad) equals 1; also, by multiplying out the terms on the left side of the 
equation, and adding up, we get: 

 
z0* (d)+ z0*(ad) + z0 * (d) − z0*(ad) =  2 * d * z0 = θ’* (d-ad)* (d+ad) /2 
 

by dividing both sides of the equation by 2 * d,  we get: 
 
z0 (2d/2d) = θ’* (d-ad)* (d+ad) /(2 * 2 * d) = θ’* (d-ad)* (d+ad) /(4 * d) 

 
the term (2d/2d) = 1, and ¼  =  0.25, so the result is:   
 

z0 = th* (d-ad)* (d+ad) *(0.25)/d, the equation used in the ITM code. 
 



where: 
th represents the angular distance, θ’, (theta prime). 

 
Line 316:   z0=(d-ad)*(d+ad)*th*0.25/d; 
  

f.  the working variable temp is set to be equal to z0 divided by 8,000 
unless the results equal or exceed 1.7; in which case the value of temp 
is limited to 1.7 (limiting the value of temp where z0 exceeds a ceiling 
of 13,600 feet).   

 
Line 319:  temp=mymin(1.7,z0/8.0e3); 
 

g. the value of temp is then set to the value of temp set in step 7 (f.), 
multiplied to the sixth power, i.e. temp = (temp)6.  Now, temp 
represents (z0/Z1)6, a component of the equation for ηs,  where Z1 =  
8,000, except that temp is limited to a maximum value of (1.7)6 = 
24.138.  

 
Line 320:   temp=temp*temp*temp*temp*temp*temp; 
 

h. the value of temp is then used to calculate the value of et to be equal 
to:   (etq*exp(-temp)+1.0)*z0/1.7556e3); 

 
 where: 

At line 293, in step 3(a.), if d = 0, etq was calculated to be equal to 
[(5.67e−6∗prop.ens−2.32e−3)*prop.ens+0.031].  

 
The full equation we are working toward is:  

 
ηs  = ( z0 / Z0 ) * [1+ (0.0.031 −Ns*2.32 *10−3 +Ns

2
  *5.67*10−6)e−( z0 / Z1)^6 ]  

     [Alg. 4.67] 
where 

ηs is the scatter efficiency factor 
Z0  = 1.756 km or 1756 meters  

and now where:  
temp represents the value of (z0/Z1)6, limited to a maximum value 
of 24.138.  

   etq is equal to the term: (0.0.031 −Ns*2.32*10−3 +Ns
2 *5.67*10−6).  

 
This shortens the equation for ηs to be:  ηs  = (z0 / Z0)*[ 1 + (etq )e− ( temp) ]. 

 
Replacing Z0  with 1756 meters and reordering, allows us to clearly see 
that et has been set to be the calculated value of ηs, the scatter efficiency 
factor: 

ηs  = [(etq )e(−  temp) + 1]*(z0 /1.756e3) 
 



  Where temp has been limited to a maximum value of 24.138. 
 
Line 321:  et=(etq*exp(−temp)+1.0)*z0/1.7556e3) 
 

i. The subroutine mymax is called to set ett to be equal to et unless et is 
equal to 1 or less; then the value is set to be equal to a minimum value 
of 1.0.  

 
Line 323:  ett=mymax(et,1.0); 
    
 
From the Algorithm:  
 
“The computation of H0 then proceeds according to the rules in Section 9.3 and Figure 
9.3 of Tech Note 101.   
 
The model requires these results at the two distances s = d5, d6 described above.  One 
further precaution is taken to prevent anomalous results.  If, at d5, calculations show that 
H0 will exceed 15 dB, they are replaced by the value it has at d6. This helps keep the 
scatter mode slope within reasonable bounds.”  
  

j.  here, the subroutine h0f is called twice;  the first time with inputs 
(r1,ett), and the second time with inputs (r2,ett),  

where:  
r1 here is defined as twice the angular distance th, times the 
effective height of the transmitter site in meters, times the wave 
number in units of 1/meters.    
r2 here is defined as twice the angular distance th, times the 
effective height of the receive antenna in meters, times the wave 
number in units of 1/meters.  
ett is the value of ηs, the scatter efficiency factor, limited to a 
maximum value of 1.0. 

 
The subroutine h0f performs a function equal to that stated in TN101 in 
Section 9.2, on page 9-4, where it states: 

“For ηs greater than or equal to 1; Read Ho(r1) and Ho(r2) from 
figure 9.3; then Ho is 

    Ho = [Ho(r1) + Ho(r2)]/2 +  ∆Ho    [TN101 9.5] 
   where 
    ∆Ho = 6 * (0.6 − log ηs) log s log q 
    
    s = αo / βo    q = r2 /(s * r1) “  
 

If ηs > 5, the value of Ho for ηs  = 5 is used.  The correction term ∆Ho is 
zero for ηs = 4, s = 1, or q = 1 and reaches a maximum value, ∆Ho = 3.6 



db, for highly asymmetrical paths when ηs= 1.  The value of ∆Ho may be 
computed as shown.” 

 
Since we cannot use the table, the approximation used here, and in subroutine h0f, is 
described in the Algorithm, section 6, starting with equation [Alg. 6.10], and continuing 
through [Alg. 6.14], where it states:    
 
 “The frequency gain function may be written as  
 
  Ho = [Hoo(r1, r2, ηs)]  + ∆Ho         [Alg. 6.10] 
where 

∆Ho = 6 * (0.6 − log ηs) log ss * log r2 /( ss * r1)   [Alg. 6.11] 
 

and where Hoo is obtained by linear interpolation between its values when ηs is an 
integer.    
 
For ηs = 1,…,5  we set 

 
Hoo(r1, r2,  j)] =  ½ [H01(r1,  j) + H01(r2,  j)]   [Alg. 6.12]   
 
With H01(r1,  j) equal to: 
  
 10 log (1 + 24r -2 + 25r -4)      j = 1   [Alg. 6.13] 
 10 log (1 + 45r -2 + 80r -4)      j = 2   

10 log (1 + 68r -2 + 177r -4)    j = 3   
 10 log (1 + 80r -2 + 395r -4)    j = 4 
 10 log (1 + 105r -2 + 705r -4)  j = 5 
 
For ηs >5  we use the value for ηs = 5, and for ηs = 0 we suppose 

 
Hoo(r1, r2, 0) = 10*log[(1+(2)1/2/ r1)2 *(1+(2)1/2/ r2)2 *( r1+r2)/(r1+r2+2*(2)1/2

  [Alg. 6.14] 
 
In all of this, we truncate the values of ss and q = r2 /(ss*r1) at 0.1 and 10.” 
 
The equation given for ∆Ho, in the Algorithm, 
 
∆Ho = 6 * (0.6 − log ηs) log ss * log r2 /( ss * r1)   [Alg. 6.11] 
 
is the same as the equation for  found in TN101: 
 
  ∆Ho = 6 * (0.6 − log ηs) log s log q  [TN101 9.5]  

    
     where q = r2 /(s * r1) “  
 



The two calls return the value hofv, i.e. the values for Ho(r1) and Ho(r2);  
h0 is then set to be equal to the average value (½ the sum) of the results of 
the two calls to h0f: 

 
 Line 324:  h0=(h0f(r1,ett)+h0f(r2,ett))*0.5; 
    

k. the value of  ∆Ho is then calculated and added to the value of h0 
using an equation for ∆Ho calibrated for meters, instead of the 
kilometers used in TN101; the call to subroutine mymin makes sure 
that the value of ∆Ho is no greater than the value of h0 obtained at line 
324, limiting the maximum value of h0 to be equal to the sum of the 
two returns from the two calls to h0f.  This is in accord with TN101, 
section 9.2, page 9-4, where it states: “If ∆Ho > [Ho(r1) + Ho(r2)]/2, 
use  Ho = [Ho(r1) + Ho(r2)].”  
  

Line 325:  h0+=mymin(h0,(1.38-log(ett))*log(ss)*log(q)*0.49); 
 

l. The subroutine FORTRAN_DIM is called with inputs (h0, 0.0); the 
subroutine returns the value of (h0 – 0.0), or h0, if h0 is greater than 
0.0; if 0.0 is greater than h0, the subroutine returns zero.  Here, this 
archaic subroutine could be replaced with mymax. 

 
This is in accord with TN101, section 9.2, page 9-4, where it states: “If 
∆Ho would make Ho negative, use Ho = 0.” 

 
Line 326:  h0=FORTRAN_DIM(h0,0.0); 
 

8. A second if statement is nested in the else statement at this point. If et, which 
holds the value of ηs, the scatter efficiency factor, is less than 1, then:  

 
Line 328: if (et<1.0) 
   { 
 

a. Here we reuse the working variable temp. The value of temp is reset to 
be equal to:  

 
((1.0+1.4142/r1)*(1.0+1.4142/r2)); 

 
Line 332: temp=((1.0+1.4142/r1)*(1.0+1.4142/r2)); 
 

b. The value of h0 is set to be equal to: 
 
h0 = et*h0+(1.0-et)*4.343*log((temp*temp)*(r1+r2)/(r1+r2+2.8284)). 

 
Step 8(b.), incorporates an interpolation statement, referring to the statement in 
the Algorithm that: “Hoo is obtained by linear interpolation between its values 



when ηs is an integer.”  If et, a.k.a. ηs < 1, then Hoo for (ηs = 1) has been 
calculated at line 324 and the value of ∆Ho for (ηs = 1) is added at line 325, to 
m e h0 equal to the value of Hak     o for (ηs = 1).   
At line 326, h0 is set to be the maximum of h0 as calculated on line 325, or zero. 
So the term (et*h0) is the value of h0 (for ηs = 1) multiplied by ηs, representing 
the portion of h0 for (0 < ηs < 1) interpolated from the value of h0 for ηs = 1. The 
term (1- et)*4.343*log((temp*temp)*(r1+r2)/(r1+r2+2.8284)) is the value of h0 
(for ηs = 0) multiplied by ( 1-ηs), representing the portion of h0 for (0 < ηs < 1) 
interpolated from the value of h0 for ηs = 0. 
 
The term  (4.343*log((temp*temp)*(r1+r2)/(r1+r2+2.8284)) represents the value 
of h0 for ηs = 0, where Ho(ηs = 0) = Hoo(r1, r2, 0) + ∆Ho(ηs = 0). TN101, section 9.2, 
states: “The case ηs = 0 corresponds to the assumption of a constant atmospheric 
refractive index.”  The Algorithm, section 6, states:  
 
“for ηs = 0 we suppose 

 
        Hoo(r1, r2, 0) = 10*log[(1+(2)1/2/ r1)2 *(1+(2)1/2/ r2)2 *( r1+r2)/(r1+r2+2*(2)1/2)  

    [Alg. 6.14]” 
 
Since  (2)1/2 = 1.4142,  the value of temp set in step 8 (a.) is equal to the term  
(1+(2)1/2/ r1)2 *(1+(2)1/2/ r2)2 in [Alg 6.14], simplifying Hoo(r1, r2, 0) to be:    
 

Hoo(r1, r2, 0) = 10*log[(temp)*( temp)*( r1+r2)/(r1+r2+2.8284)] 
 
Which we can easily recognize as being a part of the equation for h0 in step 8 (b.) 
above.  In step 8(a.), by removing the interpolation terms, we can derive that h0 
for ηs = 0, as used in the code, is:  

 
h0 for (ηs = 0)= 4.343*log((temp*temp)*(r1+r2)/(r1+r2+2.8284)). 

 
Since   h0 is equal to: Ho = [Hoo(r1, r2, ηs)]  + ∆Ho       [Alg. 6.10]  
 
For ηs = 0, [Hoo(r1, r2, 0)] is equal to: 
 
        Hoo(r1, r2, 0)=10*log[(1+(2)1/2/ r1)2 *(1+(2)1/2/ r2)2 *( r1+r2)/(r1+r2+2*(2)1/2)]  

    [Alg. 6.14]” 
 
replacing the term [1+(2)1/2/ r1)2 *(1+(2)1/2/ r2)2 ] in [Alg. 6.14] with (temp*temp), 
we get: 
 
        Hoo(r1, r2, 0)=10*log[(temp*temp)*( r1+r2)/(r1+r2+2.8284)].  
 
This is calculated as per [Alg 6.14], except that the constant multiplier value 
4.343 replaces the constant multiplier value 10, as it did for the equations based 



on [Alg. 6.13] used in the subroutine h0f, previously called by ascat.  Why? I 
thought the answer was the unusual units of measure of th, used in calculating r1 
and r2 , and I still hold that opinion.  But a single change of a constant value, from 
10 to 4.343, will not do the job of compensating for the different units properly; 
as the equations use values of  (r1)2, (r2)2 , (r1)4 and (r2)4 multiplied by varying 
constants. 

 
MAJOR PROBLEM NOTE:  Therefore, since r1 and r2   were calculated with a value 
of th in the wrong units, it appears to this author that the subroutine will produce 
errant and erratic results; the replacement of the constant value 10 by 4.343 may have 
occurred in order to produce results that were somewhat close to the empirical results 
from the field measurements.  The author finds no other solid mathematical basis for 
the change from 10 to 4.343 in the equations in the code. 

   
How can this be corrected?  By using the equation:   
 

 arctan (V/H) = θ in radians (rads) 
 
To convert the unit value of th to radians prior to its use in calculating r1 and 
r2,, at  line 305 of this subroutine; and replacing the constant 4.343 with the 
correct constant, 10, stated in [Alg. 6.13 and 6.14], in subroutines hof and 
ascat. 
 
Using a different approach, we try reverse engineering.  Solving [Alg. 6.10] for 
∆Ho, we derive that: 
 

∆Ho = Ho −  [Hoo(r1, r2, ηs)]    
 
therefore ∆Ho( ηs = 0) =  Ho( ηs = 0)  − [Hoo(r1, r2, 0)], and; 

 
∆Ho( ηs = 0) = [4.343*log((temp*temp)*(r1+r2)/(r1+r2+2.8284))] −  
10*log[(temp*temp)*( r1+r2)/(r1+r2+2.8284)] 

 
which shortens to become: 
 

∆Ho( ηs = 0) = (4.343 −10)*[log((temp*temp)*(r1+r2)/(r1+r2+2.8284))]  
 

and adds up to: 
 

∆Ho( ηs = 0) = (− 5.657)*[log((temp*temp)*(r1+r2)/(r1+r2+2.8284))]  
 
 
 and in the code, ∆Ho is added to Hoo(r1, r2, 0) by:  

 
h0+=mymin(h0,(1.38-log(ett))*log(ss)*log(q)*0.49); 

 



 
WORKING POINT: 
 

Since we cannot use the table, the approximation used here, and in subroutine h0f, is 
described in the Algorithm, section 6, starting with equation [Alg. 6.10], and continuing 
through [Alg. 6.14], where it states:    
 
 “The frequency gain function may be written as  
 
  Ho = [Hoo(r1, r2, ηs)]  + ∆Ho         [Alg. 6.10] 
where 

∆Ho = 6 * (0.6 − log ηs) log ss * log r2 /( ss * r1)   [Alg. 6.11] 
 
and where Hoo 

is obtained by linear interpolation between its values when ηs is an integer. 
For ηs = 1,…,5  we set 
 
Hoo(r1, r2,  j)] =  ½ [H01(r1,  j) + H01(r2,  j)]   [Alg. 6.12]   
 
With H01(r1,  j) equal to: 
  
 10 log (1 + 24r -2 + 25r -4)      j = 1   [Alg. 6.13] 
 10 log (1 + 45r -2 + 80r -4)      j = 2   

10 log (1 + 68r -2 + 177r -4)    j = 3   
 10 log (1 + 80r -2 + 395r -4)    j = 4 
 10 log (1 + 105r -2 + 705r -4)  j = 5 
 
For ηs >5  we use the value for ηs = 5, and for ηs = 0 we suppose 

 
Hoo(r1, r2, 0) = 10*log[(1+(2)1/2/ r1)2 *(1+(2)1/2/ r2)2 *( r1+r2)/(r1+r2+2*(2)1/2

  [Alg. 6.14] 
 
In all of this, we truncate the values of ss and q = r2 /(ss*r1) at 0.1 and 10.” 
 
The equation given for ∆Ho, in the Algorithm, 
 
∆Ho = 6 * (0.6 − log ηs) log ss * log r2 /( ss * r1)   [Alg. 6.11] 
 
is the same as the equation for  found in TN101: 
 
  ∆Ho = 6 * (0.6 − log ηs) log s log q  [TN101 9.5]  

    
     where q = r2 /(s * r1) “  

 
This is used in lieu of the procedure from TN101 section 9.2(b), where it states: 

  “For ηs less than 1: 



First, obtain Ho for ηs = 1, as described above, then read Ho for ηs = 0 
from figure 9.5.  Figure 9.5b shows Ho (ηs  = 0) for the special case of 
equal antenna heights.  The desired value is found by interpolation: 

  Ho(ηs <1) = Ho(ηs =0) + ηs [Ho(ηs =1) − (Ho(ηs =0)].” 
Since the program cannot read the value from figure 9.5;  

 
Ho = [Ho(r1) + Ho(r2)]/2 +  ∆Ho    [TN101 9.5] 

 
  Where: 
 
Line 333:   h0=et*h0+(1.0-et)*4.343*log((temp*temp)*(r1+r2)/(r1+r2+2.8284)); 
      } 

 
The above steps 8 (a.) and (b.) are used to approximate the results obtained from 
the procedure found in TN101 section 9.2(b). 
 
This is calculated as per [Alg 6.13], except that the constant multiplier value 
4.343 replaces the constant multiplier value 10.  Why? I thought the answer was 
the units of measure of th, used in calculating r1 and r2 , and I still hold that 
opinion.  But a single change of a constant value, from 10 to 4.343, will not do the 
job properly; as the formula uses values of  (r1)2, (r2)2 , (r1)4 and (r2)4 multiplied by 
varying constants. 

 
MAJOR PROBLEM NOTE:  Therefore, since r1 and r2   were calculated with a value of 
th in the wrong units, it appears to this author that the subroutine will produce errant 
and erratic results; the replacement of the constant value 10 by 4.343 may have 
occurred in order to produce results that were somewhat close to the empirical results 
from the field measurements.  The author finds no other solid mathematical basis for 
the change from 10 to 4.343 in the equations in the code. 

   
How can this be corrected?  By using the equation:   
 

 arctan (V/H) = θ in radians (rads) 
 
To convert the value of th to radians prior to its use in calculating r1 and r2; and 
replacing the constant 4.343 with the correct constant, 10, stated in [Alg. 6.13 
and 6.14], in subroutines hof and ascat. 
 
9. A third if statement is nested in the else statement at this point. If both:  h0 is 

greater than 15.0, and h0s is greater than or equal to 0.0, then h0 is set to be 
equal to h0s;  

 
Line 336:  if (h0>15.0 && h0s>=0.0) 
   h0 = h0s; 
 



10.  The second else statement then ends, but the first else statement is still active, 
and continues;   

 
a. h0s is set to be equal to h0.  Here h0s, the Ho value for smooth earth, is 

preset to be equal to the value of h0, unless h0 was >15 and h0s > 0, 
where both would have been set to the value for h0s.  

b. th is set to be equal to: propa.tha + d * prop.gme;  
 
where:  
 propa.tha  is the total bending angle, set in lrprop;  
 d  is the path distance   

prop.gme;  is the effective earth’s curvature. 
 
NOTE: HERE, th IS RECALCULATED USING propa.tha, which may be derived from 
prop.the[0] and prop.the[1] in step 3(c.) of lrprop.. 
 

c. ascatv is set to be equal to: 
 ahd(th*d)+4.343*log(47.7*prop.wn*(th*th*th*th))  

   − 0.1*(prop.ens-301.0)*exp(-th*d/40e3)+h0; 
 

The subroutine ahd is called with input equal to: (th*d).  The subroutine 
ahd returns the value of F0 (D), a.k.a. F (θ 

d,  Ns = 301), used below in the 
equation for F (θ 

d,  Ns ).    
 

From Section 4.3.1 , “The function Ascat,”  
 
 “we put  
 

Ascat (s) = 10 log(k *  H * θ 4) +  F (θ 
s,  Ns )  +  Ho   [Alg. 4.63] 

 
  where  
   F (θ 

s,  Ns )  is the function shown in Figure 9.1 of TN101 
   Ho is the “frequency gain function” 
   H is 47.7 meters.” 
  also: 
   k,  the wave number, is the value stored in prop.wn; 
   th is the angular distance, recalculated in step 10(b.) above;  
 
 

Figure 9.1 of  TN101 is a table; so its function is approximated by the equation 
listed after III.48 in Annex III, Section 5 – Forward Scatter, where it states: 

 
The function F (θd) may be obtained for any value of Ns, by modifying the value 
computed for Ns = 301: 

   
  F (θ 

d,  Ns )  =  F (θ 
d,  Ns = 301 ) − 0.1*( Ns -301.0)*exp(-θ *d/40) 



  
Which, with the constant 40 converted to 40,000 to adjust for a change from 
kilometers to meters as the unit value of d, is the same as: 

 
F (θ 

s,  Ns )  =  − 0.1*(prop.ens-301.0)*exp(-th*d/40e3) 
    
  where 
   prop.ens  is the earth’s surface refractivity, a.k.a. Ns

   th is the angular distance,θ, recalculated in step 10(b.) above;  
   d  is the path distance 
 
NOTE:  4.343 is being substituted for 10 again, as discussed above. 
 

d. The first else statement then ends its run. 
  
Line 340: h0s=h0; 
Line 341:  th=propa.tha+d*prop.gme; 
Line 343: ascatv=ahd(th*d)+4.343*log(47.7*prop.wn*(th*th*th*th))-0.1*(prop.ens-

301.0)*exp(-th*d/40e3)+h0; 
      } 
 

11.   The subroutine then ends by returning the value of ascatv, the “scatter 
attenuation” at a distance d.  

 
Line 346: return ascatv; 



SUBROUTINE D1THX: A functional explanation, by Sid Shumate.   
Last Revised July 27, 2008.  
 
Delta  h  (experimental) subroutine 
 
Note: Used with point-to-point mode.  Called by qlrpfl, mid-routine.  
Calls mymin, mymax, assert, zlsql, qtile. 
 
Used to find dh, (a.k.a. delta h) the terrain irregularity factor. 
 
Derived from the Irregular Terrain Model description by George Hufford, 2002, (ITMD), 
compared to the ITM.cpp prepared by J. D. McDonald and John Magliacane for 
compilation on unix and linux systems.  “Line” numbers refer to the ITM.cpp as line 
numbered by Bloodshed Software’s DevC++ print function.  “Alg” numbers refer to the 
algorithm formula in “The ITS Irregular Terrain Model, version 1.22, the Algorithm” 
(the Algorithm) by G. A. Hufford, 1995.  There are also quotes and references, in the 
background section and subroutine description, from the Appendices to Tech Note 101, 
Volume II, from  NTIA Report TR-82-100, “A Guide to the Use of the ITS Irregular 
Terrain Model in the Area Prediction Mode” (NTIA TR-82-100), and from “A manual 
for ITM, “Irregular Terrain Model”, released by the NTIA as itm_man.txt, (ITM 
Manual).  
 
Computes the terrain irregularity parameter dh from the profile elevation array pfl 
between points located at  x1 and x2.  x1 is defined as a distance from the transmitter site 
to the start point of a path of elevation points considered; x2 is defined as a distance from 
the transmitter site to the end point.  Both x1 and x2 must be specified in meters. 
 
Please note that the qlrpfl subroutine, and the d1thx, hzns and z1sq1 subroutines that are 
called during qlrpfl, were intended to be experimental early versions of L-R software.  
They are still in use today, with few modifications or corrections.  The ITM Manual 
states:  

“It should be noted that the original ITM is silent on many of the details for 
defining some of the path parameters.  This is particularly true of the effective 
heights HE, and, to some lesser degree, of the terrain irregularity parameter DH.  
The effective height, for example is defined as the height above the “effective 
reflecting plane,” and in the past the investigator has been urged to use his own 
best judgement as to where that plane should be placed. The subroutine QLRPFL, 
in trying to automate the definition of all parameters, has been forced to define 
explicitly all missing details. It has done this in a way that seems reasonable and 
in full accord with the intent of the model.   One should not, however, conclude 
that these efforts are completed. Hopefully, better results are obtainable.”       

 
Background on Delta H, (∆h), the Terrain Irregularity Parameter  
 
Also described as “∆h, the interdecile range of elevations between the two points x1 and 
x2”.  The interdecile range is a specific interquartile range; it is computed as the 



difference between the 10th and 90th percentiles. It comprises the middle 80% sample of 
the population: in this case, a set of elevation values derived from the elevation data 
contained in the pfl array.   The term x1 is defined as a distance from the transmitter site 
to the start point; x2 is defined as a distance from the transmitter site to the end point. 
We find by studying the ∆h, or delta h, used in the irregular terrain model, that the 
concept and calculation does not closely follow the definition of the terrain roughness 
factor, σh, specified in Tech Note 101.  
 
In Tech Note 101, on page 5-9, it states:   
 

“5.2.2. The terrain roughness factor, σh.  The terrain roughness factor σh 
in (5.1) is the root-mean-square deviation of modified terrain elevations, yi, 
relative to the smooth curve defined by (5.16), within the limits of the first Fresnel 
zone in the horizontal reflecting plane.  The outline of a first Fresnel zone ellipse 
is determined by the condition that: 

 
   r11 + r21 =   r1 + r2   +  λ /2  
Where:     
 

r11 + r21  is the length of a ray path corresponding to reflection from a point on  the 
edge of the Fresnel zone,  

 
r1 + r2     is the length of the reflected ray for which angles of incidence and 
reflection are equal. 
 

Norton and Omberg [1947] give general formulas for determining a first Fresnel zone 
ellipse in the reflecting plane.  Formulas are given in annex III for calculating distances 
xa and xb  from the transmitter to the two points where the first Fresnel ellipse cuts the 
great circle plane.”    
 
Later, on page 5-13, it states:  “the terrain roughness factor σh, (in Tech Note 101 here 
designated by a lowercase sigma sub h), is the root-mean-square deviation of modified 
terrain elevations relative to the curve y(x) within the limits of the first Fresnel zone in 
the horizontal reflecting plane.  The first Fresnel ellipse cuts the great circle plane at two 
points, xa and xb kilometers from the transmitter.  The distances xa and xb may be 
computed using equations (III.18) or (III.19) to (III.21) of annex III.” 
 
The root-mean-square is the square root of the average of the squares of a set of numbers.  
If we have a set of values in an array: x1, x2, x3,…,xn,  the root-mean-square can be 
computed, using a for loop, as the square root of the sum of the squared array values 
divided by n, or:  
 
 xrms  =  (( x1

2 + x2
2  + x3

2 … + xn
2 )/n)1/2  

 
Deviation refers to the amount of difference between the value being considered and the 
arithmetic mean value.  One of the most important uses of the root-mean-square is to 



determine the standard deviation from the arithmetic mean.  The standard deviation from 
the mean is the root-mean-square of the deviations from the mean.   
 
In classical statistics, the formula for calculating the variance of an unknown population 
variance is:    
  σ2  = Σ(x  − µ)2     
      N 
Here the population parameter is abbreviated with the Greek letter sigma in lower case, 
the mean is a population parameter (mu), and the number of samples is represented with a 
capital N.   The term [x  − µ] represents the difference between the sample value (x) and 
the mean value µ; this term is the deviation of the sample. 
 
The standard deviation, σ, is simply the square root of the variance, or:  
 
   σ  = ((Σ(x  − µ)2)/Ν)1/2 

 
Here we are using a sample of the total population.  For calculating statistics of a sample 
of the population, statisticians indicate that the mean is of a sample population by 
replacing µ with the arithmetic mean x, and they decrease the denominator by 1, to 
account for the percent probability that a wider deviation exists in the population than in 
the sample of the population. The formula then becomes: 
 
  σ  = ((Σ(x  − x)2)/(n))1/2 

 
Where n =  (N  − 1) 
 
If the arithmetic mean x is equal to: 
 

x = (x1 + x2
  + x3 … + xn )/n, 

 
then the standard deviation s can be computed, using a for loop, as: 
 
 s  =  (((x1 - x)2 + (x2 - x)2  + (x3 - x)2… + (xn - x)2 )/n)1/2 . 
 
The terrain roughness factor is the root-mean-square deviation of modified terrain 
elevations relative to the curve y(x) within the limits of the first Fresnel zone in the 
horizontal reflecting plane.  We can now see how to obtain the root-mean-square 
deviation of terrain height data taken from a selected part of the path between the 
transmitter and the receiver; the information is in the pfl array.  But what is meant by 
“modified terrain elevations relative to the curve y(x)”? 
 
In 5.2.1, a Curve-Fit to Terrain, found on page 5-8 of Tech Note 101, it states:   
 

“A smooth curve is fitted to terrain visible from both antennas.   It is used to 
define antenna heights h’1 and h’2, as well as to determine a single reflection point 
where the angle of incidence of a ray r1 is equal to the angle of a reflection of a 



ray r2 in figure 5.1.  This curve is also required to obtain the deviation of terrain 
heights used in computing Re in (5.1).  
 
First, a straight line is fitted by least squares to equidistant heights hi(xi) above sea 
level, and (xi )2 /(2a) is then subtracted to allow for the sea level curvature 1/a 
illustrated in figure 6.4.   The following equation describes a straight-line h(x) 
fitted to 21 equidistant values of hi(xi) for terrain between xi = x0 and xi = x20  
kilometers from the transmitting antenna.  The points x0 and x20 are chosen to 
exclude terrain adjacent to either antenna which is not visible from the other:” 
 
   h(x) = h + m(x – x )                                    (5.15a) 

 
Here, h is the arithmetic mean of the elevation heights, i.e. the average terrain height: 

             
h = ((h1 + h2

  + h3 … + h20 )/21   (5.15b, 1 of  3) 
 
x is the arithmetic mean of the distances from the transmitter site to the to x0 + x20, 
i.e. the distance from the transmitter site to the center of the x path:    

 
x  = (x0 + x20)/2     (5.15b, 2 of  3) 

 
    

m is the slope of the line.  To simplify the later calculation of the least squares 
solution, the slope is calculated with reference to an x co-ordinate referenced to 
the center of the x path.  If n is the number of elevation points, in this example 21, 
then (n-1) is equal to the number of intervals between the elevations points, equal 
in this example to 21 – 1 = 20. The center of this path of equidistant intervals is 
then at i = (n – 1)/2, or (21 – 1)/2 = 10.  So if we want to start a for loop 
calculation from the transmitter end of the path, we have to start at the 
recalibrated x path position, the interval closest to the transmitter site, in this 
example now equal to (i – 10).  So the slope calculation will start at i = 0 and 
proceed to i = 20, represented in the below calculation by i – 10, therefore 
calculating from –10 to +10.    

         
  m = 2 * (h1(i-10) + h2(i-10)  + h3(i-10) … + h20(i-10))     (5.15b, 3 of 3) 
    77 * (x20  - x0) 
  

This is a slightly different notation, but is still the same formula given in 5.15b, 
3rd of 3.    The derivation of the 2/(77*(77 * (x20  - x0))) set of terms is not 
explained in Tech Note 101; and provides a correct answer only if the number of 
increments equals 21.    

 
The derivation of a more universal version of this formula, which will work with 
any number of increments, is shown in the description of the subroutine z1sq1, 
which this subroutine, d1thx calls, in an attempt to perform this least-squares-fit-



to-a-line calculation.  Here, we will simply state that the version of the formula 
for the slope, m, which provides correct results for any number of increments, is:      

 
  m =   (h1(i-10) + h2(i-10)  + h3(i-10) … + h20(i-10)) 
        ((i0-10)2 + (i110)2  + (i2-10)2 … + (i20-10) 2) 
 

And is intended to be incorporated in a revised version of z1sq1, to be named 
zlsq2. 

 
After 5.15b, Tech Note 101 states:  
 
  “Smooth modified terrain values given by  
 
  y(x) =  h(x) -  x2 /(2a)      (5.16)     

 
will then define a curve of radius a which is extrapolated to include all values of x 
from x = 0 to x =d, the positions of the antennas.” 
 

Here, a represents the effective radius of the earth under the great circle signal path.  The 
- x2 /(2a) term accounts for the effective curvature of the earth; it adds the effective 
increase in terrain height due to the effective curvature of the earth, to the “flat earth” 
signal path average terrain line formula. Section 4 of Tech Note 101 describes a method 
of deriving the effective earth’s radius, a, from ns, the atmospheric refractive index at the 
surface of the earth, and ao, the actual radius of the earth. 
 
Note before reading further: The ∆h correction term defined by (6.12) in the next quote, 
mentioned after (5.17), is not the same ∆h we have previously discussed in this section.  
It is only distantly related to, and not the same as, the delta h (∆h) function calculated by, 
and result d1thxv provided by, subroutine d1thx. 
 
 
Continuing with Tech Note 101 after (5.16). it states:  
 
  “The heights of the antennas above this curve are: 
 
  h’1 =  hts  - h(0),       h’2  =  hrs  - h(d)    (5.17)     

 
If h’1 or h’2 is greater than one kilometer, a correction term, ∆h, defined by (6.12) and 
shown on figure 6.7, is used to reduce the value given by (5.17). 
 Where terrain is so irregular that it cannot be reasonably well approximated by a 
single curve, σh is large and Re = 0, not because the terrain is very rough, but because it is 
irregular.  In such a situation, method 3 of section 5.1 may be useful.”  
 
 
 
 



 
The Federal Communications Commission’s Terrain Roughness Factor  
 
 
The following is excerpted from the Federal Communications Commission (FCC) Rules 
and Regulations, as published as Code of Federal Regulations Title 47, Volume 4, 
Subpart B, FM Broadcast Stations, Sec. 73.313, Prediction of coverage: [CITE: 
47CFR73.313, and for the diagrams, 47CFR73.333]: 
 
    (f) The effect of terrain roughness on the predicted field strength of a signal at points 
distant from an FM transmitting antenna is assumed to depend on the magnitude of a 
terrain roughness factor (h) which, for a specific propagation path, is determined by the 
characteristics of a segment of the terrain profile for that path 40 kilometers in length 
located between 10 and 50 kilometers from the antenna. The terrain roughness factor has 
a value equal to the distance, in meters, between elevations exceeded by all points on the 
profile for 10% and 90% respectively, of the length of the profile segment. (See Sec.  
73.333, Figure 4.)  
 
    (g) If the lowest field strength value of interest is initially predicted to occur over a 
particular propagation path at a distance that is less than 50 kilometers from the antenna, 
the terrain profile segment used in the determination of terrain roughness factor over that 
path must be that included between points 10 kilometers from the transmitter and such 
lesser distances. No terrain roughness correction need be applied when all field strength 
values of interest are predicted to occur 10 kilometers or less from the transmitting 
antenna. 
 
    (h) Profile segments prepared for terrain roughness factor determinations are to be 
plotted in rectangular coordinates, with no less than 50 points evenly spaced within the 
segment using data obtained from topographic maps with contour intervals of 
approximately 15 meters (50 feet) or less if available. 
 
    (i) The field strength charts (Sec.  73.333, Figs. 1-1a) were developed assuming a 
terrain roughness factor of 50 meters, which is considered to be representative of average 
terrain in the United States. Where the roughness factor for a particular propagation path 
is found to depart appreciably from this value, a terrain roughness correction ([Delta]F) 
should be applied to field strength values along this path, as predicted with the use of 
these charts. The magnitude and sign of this correction, for any value of [Delta]h, may be 
determined from a chart included in Sec. 73.333 as Figure 5. 
 
    (j) Alternatively, the terrain roughness correction may be computed  
using the following formula: 
 
    [Delta]F=1.9-0.03([Delta]h)(1+f/300) 
 
Where: 
[Delta]F=terrain roughness correction in dB 



[Delta]h=terrain roughness factor in meters 
f=frequency of signal in MHz (MHz) 
 
    Effective Date Note: At 42 FR 25736, May 19, 1977, the effective  
date of Sec. 73.313 paragraphs (i) and (j) was stayed indefinitely. 
 
NOTE: The FCC’s terrain roughness factor is a related concept, but not the same thing, 
as the Tech Note 101 terrain roughness factor.  In Report No. R-6602, “Development of 
VHF and UHF Propagation Curves for TV and FM Broadcasting,” by Damelin, Daniel, 
Fine and Waldo, Sept.1966, it states:  
 
 “The corrections for terrain roughness are intended for application in estimating 
median (or average) field strengths over areas where the general character of the terrain is 
fairly uniform, or where there is no abrupt change in terrain roughness.  It is not possible 
to accurately predict the field strength at any given receiver site.” 
 
 
 

 
 



 
 
 



Now, on to the description of the subroutine. From ITMD Section 44: 
 
Call inputs: 
 
pfl terrain elevation profile array, starting at transmitter site and ending at 

receiver site, following great circle path, with: 
  pfl[0] =enp, the number of increments 
  pfl[1] = xi, distance per increment (in meters) 
  pfl[2] = z(0), the transmitter tower base AMSL, or elevation height 
  pfl[[np+2] = z(np), the receive location AMSL, the last elevation. 
 
&x1 x1, input from qlrpfl as xl[0], the start point of the section of the total path 

to be considered, defined as a distance (measured in meters) from the 
transmitter site.  The value is equal to the lesser of: 15 times the 
transmitter height AGL, or 1/10 of the distance from the transmitter site to 
the horizon.   

&x2 x2, output from qlrpfl as xl[1], the end point of the section of the total path 
to be considered, defined as a distance (in meters) from the transmitter 
site. The value is equal to the lesser of: 15 times the receiver antenna 
height AGL, or 1/10 of the distance from the receive site to the horizon.  

 
 
This subroutine declares the following private, or local, arguments:  
 
 Here the argument types are noted (int, and double, in this case) because this subroutine 
incorporates conversions between (int) and (double).   
 
Declared as type integers (int): 
 
np  number of points in pfl elevation array.  
 
ka equal to 1/10 of (8+length of the section of the total path to be  

considered), range limited to between 4 and 25. 
 
kb  equal to n- (ka+1). 
 
n number of intervals between the transmitter site and the end point of a 

path to be considered in this subroutine only. 
 
k  initially set to be one more than xa.  
 
j  counting variable in a for loop. 
 
 
Declared as type double decimal precision (double): 
 



d1thxv  calculated terrain irregularity parameter; output from d1thx. 
 
sn  one less than n.  The total path length, measured in increments, of path n. 
 
xa distance from transmitter to start of test path for s array. 
  
xb distance from transmitter to end of test path for s array. 
  
xc working variable for increment distance of s loop 
 
*s an array of elevations interpolated from terrain elevations in the pfl array, 

the renamed elev array relayed by the point_to_point (or 
point_to_point_two) subroutine from the wrap-around input-output 
software.    

 
This subroutine: 
 

1. Defines np, number of points, to be equal to pfl [0], the number of increments in 
array pfl. 

 
Line 1249: np=(int)pfl [0]; 
 

2. Defines xa to be equal to xl/pfl [1], equal to x1(x-one, the distance from the 
transmitter site to the start point being considered), divided by the increment 
distance, initially making double xa equal to the number of increments from the 
transmitter site to the start point of the section of the total path to be considered. 

 
Line 1250: xa=x1/pfl[1]; 
 

3. Defines xb to be equal to x2/pfl [1], equal to x2(receiver site) divided by the 
increment distance, initially making double xb equal to the number of increments 
from the transmitter site to the end point of the section of the total path to be 
considered. 

 
Line 1251: xb=x2/pfl[1]; 
 

4. Presets d1thxv=0.0 
 
Line 1252: d1thxv=0.0. 
 

5. An if statement used to check if (xb - xa<2.0).  If the number of increments in the 
considered path is less than 2, indicating a path length too short to calculate 
d1thxv, it causes the program to exit, returning d1thxv = 0.0 . 

 
Line 1254: if  (xb-xa<2.0) 
Line 1255:  return d1thxv;  



 
6. Sets ka to be equal to 1/10 of (xb-xa+8), or 1/10 of (8+length of the section of the 

total path to be considered, measured in increments), then sets the range of ka to 
be between 4 and 25 increments.   

 
 Since ka is declared as an int, the data used to calculate its value must be int; but the 
declared local xb and xa are of type double.   The function, by stating (int) after the 
equal sign and before the calculation, forces (creates) an output that is (int).       
 
 

Line 1257: ka=(int)(0.1*(xb-xa+8.0));  
Line 1258: ka=mymin(mymax(4,ka),25); 
 

7. Sets value of n equal to (10 times ka) – 5; since ka is limited in range to between 
4 and 25, then n is limited in range to between 35 and 245 increments.  

 
NOTE:  THIS IS AN ARCHAIC, PROBLEM-CAUSING RANGE LIMIT FOR n, FAR 
TOO SMALL FOR TODAY’S 90 METER (3 ARC-SECOND), 30 METER (1 ARC-
SECOND) AND 10 METER ( 1/3 ARC-SECOND) PATHS, WITH THOUSANDS OF 
INTERVALS.  It limits n to 245 times 90 m, or 22 km, for 3 arc-second database interval 
sizes, which is acceptable; but it limits the maximum consideration to only 7.35 km for 1 
arc-second database all-points intervals, and 2.45 km for 1/3 arc second database all-
points intervals.  In the ITWOM version, this subroutine has been modified to set ka 
based on path length of up to 20 kilometers, as per TN101 section 5.2.1.  TN101 uses 20 
km as a suggested range to include the majority of the middle 80% of terrain for line-of-
sight paths.  This is a gross simplification that assumes that this middle 80% of terrain 
can be approximated by a straight line, an assumption that fails for highly irregular 
terrain.  
 
The FCC regulations for their version of [delta] h specifies a minimum 10 km, and up to 
a 50 km maximum, limit; the n limit of 7.35 km for 1 arc-second database all-points 
intervals, and 2.45 km for 1/3 arc second database intervals, are both below the minimum 
FCC limit for consideration.  
 
In continuing the comparison to the FCC’s terrain consideration rules, we find that FCC 
47CFR73.7313 indicates that the consideration of terrain roughness extends from n = 10 
to 50 km; i.e. the maximum length of the path to be considered was 50 km, the 
calculation was to be made using terrain information on the signal path starting at 10 km 
and extending to the receive point, up to a maximum of 50 km.  No consideration was to 
be made for terrain roughness if the path was less than 10 km.  The length of n, being 10 
times ka less 5, can only compare well with the 10 to 50 meter maximum range of the 
FCC’s delta h determination method, unless ka = 1, where n would = 5; since ka is range-
limited to be not less than 4, this is not possible.  So let us look at another part of the FCC 
regulations; where a minimum number of 50 increments over the 40 km consideration 
path section are required.  Converting from paper maps to a digital database, this is 1.2 
increments per km, equivalent to an 830-meter database, or roughly equivalent to, and 



therefore compatible with, the 900 meter GLOBE 30 arc-second database utilized by the 
Windows version of the ITM (itm.exe), made available by NTIA.      
 
The maximum and minimum limits for ka, therefore, need to be set based upon the path 
lengths, not the number of intervals.  We only need to reset the maximum limit, as ka is 
calculated to be far less than xb.   It would be in accordance with the FCC guidelines to 
limit the maximum length of n to 50 km, or 50,005 meters.  Distance in meters can be 
converted to intervals by dividing by pfl[1], the increment width. 
 
 
On Line 1245; add kmx, between k, and j on the int declaration line.   
 
The units of pfl[1] is meters/increment, so d1thx, line 1258 should be replaced by:  
 
Line 1258r:      kmx=mymax(25,(int)(5000.5/(pfl[1]))); 
Line 1259r: ka=mymin(mymax(4,ka),kmx); 
 
Line 1258r sets the kmx, or ka maximum, to be the maximum of 25 or the integer value 
of x2, the path length to the transmitter end of the short path considered, divided by 10 
times the interval width, leaving kmx measured in increments.  For example, for a 3-arc-
second database with maximum 90 m. intervals, the interval width is approximately 79 
meters; for a 20 km (12.4 mi.) total path, kmx would be limited to approximately 25 
intervals, and for a 1-arc second database would be limited to approximately 76 intervals.   
Line 1259r replaces 25 with kmx.  
 
END FIRST CORRECTION NOTE.   Returning to the discussion of d1thx; 
 
The argument n is set to be equal to 10 times ka, less 5 intervals, in intervals. 
 
Line 1259: n=10*ka-5 
  

8.    Sets value of kb equal to n-ka+1, or equal to 10*ka-5-ka+1 = 9*ka-4. 
 
Line 1260: kb= n–ka+1 
 

9. Sets value of sn equal to n-1, the total path length, measured in increments, of 
path n. 

 
Line 1261: sn=n-1,  
 

10.   Calls subroutine assert with input parameters (s=new double[n+2]) !=0).  
assert is a standard c function prototype that, in c++, returns an error message and 
aborts the program if the expression, in this case s=new double[n+2], is equal to 
zero, i.e. the expression is false.  If n +2 = 0, the program aborts, returning an 
error message.  Note the use of new to create and allocate memory for the s array, 



and of double to declare the s array values to be doubles, where n was declared as 
an integer (int).     

 
Line 1262: assert (s=new double[n+2]) !=0) 

 
11. Sets value of array value s[0] equal to sn, which is equal to the length, in 

increments, of the path considered, also = (n – 1). 
 
Line 1263:  s[0]= sn    
 

12. Sets value of array value s[1] equal to 1.0 
 
Line 1264: s[1]=1.0 
 

13. Sets value of xb to be equal to (xb-xa)/sn, where: 
 
(xb, prior to step 13) = the number of increments from the transmitter site to x2,  
the end point of the path considered. 
xa = the number of increments from the transmitter to the start point, x1, of the 
path considered. 
sn is the length of the path considered, measured in increments. 
 
So (xb-xa) is the length, measured in increments, of the path between x1 and x2.  
xb is redefined to be the length of the path between x1 and x2, divided by the 
length of sn,  the length of the “n” path defined by 10*ka – 6, measured in 
intervals.  This makes xb equal to the ratio of: the length of the x1 to x2 path, to 
the length of the “n” path derived from ka.   

 
Line 1265: xb=(xb-xa)/sn 
 
Warning!  This causes computational error of if ka is restricted so that the value of sn 
causes xb to exceed 1.0.  
 

14. Sets value of k equal to xa+1.0, equal to the number of increments from the 
transmitter to the start point, plus one.  The use of (int) after the equal sign allows 
and forces a calculation using (double) xa, to produce an integer result.  The value 
of xa is truncated, not rounded off, to zero decimal places, so 3.9 and 3.3 both 
would calculate as 3, i.e. if xa is 3.9, k = 3 +1 = 4, if xa is 3.3, k = 3 +1 = 4.   

 
 Line 1266: k=(int (xa+1.0)); 
 
 
NOTE CHANGE BELOW FOR TEST PURPOSES; REPLACES XA BY XC FOR 
FOR/WHILE LOOP USE. 

15. Here, the original version of the ITM resets the value of double xa by subtracting 
value of k.   However, the value of xa is needed later; so the argument ac has been 



declared and substituted here for the ITWOM.  The use of the (double) before k 
allows and forces a type double result to a calculation incorporating the integer 
(int) k.  Since k =  (xa +1), with the value truncated to zero decimal places by the 
double to integer conversion, this calculation will produce a double xa that is 
equal to the value of xa less the value of (xa +1) truncated to no decimal places, 
resulting in xa = a negative value, between -1 and slightly negative of zero.  The 
new xa value after the calculation on line 1267 is equal to the negative of the 
amount to the right of the decimal point of xa prior to the calculation on line 
1267. 

  
Line 1267: xa-=(double (k)); 
 
For test purposes, replaced by: 
 
Line (new): xc=xa-(double (k)); 
 

16. Initiates for loop, starting with j=0, continuing until j=n; 
 
Line 1269: for (j=0, j<n; j++) 
 

a. A while loop is initiated within the for loop, running while xc > 0.0 and 
k<np.  When xc is greater than zero, it:  

i. Subtracts 1 from xc. 
ii. Increments the value of k, increasing the value of k by 1. 

 
Note that k is not incremented after it reaches k=np, so as not to exceed the quantity of 
terrain data stored in pfl. 
 
Line 1271: while (xc>0.0 && k<np) 
Line 1273:  xc-=1.0; 
Line 1274:  ++k 
 
The for loop then continues;  
 

b. It sets value of s[j+2) equal to pfl[k+2]+(pfl[k+2]-pfl[k+1])*xc,  
c. And then redefines the value of xc, this time equal to xc + xb. 
 

Line 1277: s[j+2]= pfl[k+2]+(pfl[k+2]-pfl[k+1])*xc 
Line 1278: xc=xc+xb 
 
An interesting sequence of events happens in this for loop.  The loop populates the s 
array elevation values in s array positions s[2] to s[n +1], i.e. s[ (n –1) + 2] with values 
derived from the values in the pfl array.  Derived is the key word here; the values in pfl 
from pfl array locations pfl [k+2], with k incrementing approximately every 2nd s array 
increment, and proceeding toward location pfl [np –1], are being interpolated to fill a set 



of intervals equal to  (n –1), the number of intervals in path “n”, with interval widths 
equal to the intervals in path “n”.    
 
 

17. Subroutine z1sq1 is then called, with inputs (s , 0.0, sn) where: 
 

s is an array with values: 
s[0] = sn  (see 11. above) 
s[1] = 1.0  (see 12. above) 

       s[2….(n-1)] =  elevations calculated in for loop (see 16. above) 
        
      0.0  indicating that z1sq1 is to start at the s array elevation value stored in s[2]. 
      sn       which is equal to the length, in increments, of the path considered, also = 

(n – 1), indicating that z1sq1 is to continue considering the s array 
elevation values all the way to the value stored in s [n + 1], i.e. s ((n –
1)+2).  

     
Output values of z1sq1: 
 
      xa   now redefined as the z0, or value of average terrain height line at 

transmitter site. 
  

xb working variable; after z1sq1 called, is the z1, or value of average terrain 
height line at receiver site. 

  
18. z1sq1 then returns:  

 
xa = z0, the elevation value of the average terrain line at the transmitter site. 
xb = z1, the elevation value of the average terrain line at the receive site. 

   
19.    The value of xb is then again redefined to be equal to (xb-xa)/sn, or (the 

elevation value of the average terrain height at the receive site above the elevation 
value of the average terrain height at the transmitter site), divided by (n – 1).  

 
Line 1282: xb=(xb-xa)/sn   
 

20.    A for loop is initiated, starting at j=0; running until j is no longer less than n. 
 
Line 1284: for (j=0; j<n; j++) 
 

a. The loop first subtracts the value of xa from s[j+2], subtracting the 
average elevation height calculated by z1sq1 from the first elevation 
height in the s array, leaving as a value, only the amount of deviation, in 
meters, from the average height, stored in the each of the s array locations.  

 



In Tech Note 101, at 5.16, the term [–x2/(2a)], adding consideration of the effective 
curvature of the earth, is added to the straight line formula y(x) = h(x), and to the 
elevation heights, before the plotting of the terrain and calculation of the deviations.  
However, since here we are not plotting, and the deviations are being obtained by 
subtracting the straight-line formula results, (the value of xa as incremented by the for 
loop), from the terrain heights (found in the s array values prior to processing by this for 
loop), the effective curvature term would cancel out.  Therefore, the values of the 
elevation deviations obtained and stored in the s array will be the same with or without 
consideration of the effective earth radius.     

 
Line 1286:   s[j+2]-=xa 

 
b. It then adds the value of (double) xb to (double) xa.  As the loop advances, 

this causes the value of xa to proceed from the z0 value to the z1 value, 
following along the average elevation height line y= a + bx calculated by 
z1sq1.   

 
Here again this subroutine branches off from following Tech Note 101, specifically, the 
description of methodology and procedure specified for determining the terrain roughness 
factor, σh, described in Tech Note 101 at 5.2.2.  In its place, the subroutine determines a 
related value, described as a delta h  [∆h ].  First, note that this ∆h is NOT the same as the 
∆h correction term defined by Tech Note 101 at (6.12), a term that is to be applied only 
when the effective heights of the transmitter and/or receiver are greater than a kilometer 
above sea level.  It is related to, but not the same as, the delta h (∆h) function calculated 
by, and result d1thxv provided by, subroutine d1thx. 
 
 
The subroutine d1thx is described in Appendix A of NTIA Report TR-82-100, “A Guide 
to the Use of the ITS Irregular Terrain Model in the Area Prediction Mode”, as:  
 

“Computes the terrain irregularity parameter dh from the profile pfl between 
points at x1 [less than] x2.  

 
And in the ITMD, d1thx is described as:       
 
Using the terrain profile pfl we find ∆h, the interdecile range of elevations between the 
two points x1 and x2”. 
 
The interdecile range is a specific interquartile range; it is computed as the difference 
between the 10th and 90th percentiles. It comprises the middle 80% sample of the 
population.   The term x1 is defined as a distance from the transmitter site to the start 
point; x2 is defined as a distance from the transmitter site to the end point. 
 
Why is this quantile-based system used to derive ∆h?  Quantiles are less susceptible to 
long tailed distributions and outliers.  Since the elevation data may have anomalies, such 
as voids in SRTM data, causing outliers far removed from the mean, as long as the 



outliers are less than 10% of the total data, causing them to be lost in the lower 10% 
and/or upper 10% of data that is abandoned in the qtile subroutine, this methodology 
provides more accurate results than means and other moment-related statistics. 
 
Further explanation of quantiles can be found in the chapter on the qtile subroutine, 
which d1thx calls below in order to determine the 10th and 90th percentile quantiles. 
   
Line 1287: xa=xa+xb 

    
21.     qtile is a subroutine that returns a quantile.  The subroutine qtile is called twice, 

with the same path length (n-1), using array s and starting at s array location s[2]; 
once for quantile (ka-1), intended to be the 90th percentile quantile, and the second 
time for quantile (kb-1), the 10th percentile quantile.  The s+2 term causes the 
subroutine to skip the s array locations s[0] and s[1] which store the increment 
length and quantity values, and start with the elevation values in s[2]. 

  
22. The value of d1thxv is set to be equal to the difference between the two quantile 

values obtained from the deviation-from-average-terrain values in the s array, 
equal to quantile (ka-1)-quantile (kb-1).   

 
Line 1290: d1thxv= qtile(n-1,s+2,ka-1)-qtile(n-1,s+2,kb-1) 
 
With regard to describing the methodology and procedure to this point, for determining 
this ∆h, the interdecile range of elevations between the two points x1 and x2”, the NTIA 
is not specific.  George Hufford stated in the Algorithm, Section 1.3:  
 

“These quantities, together with ∆h, are all geometric and should be determined from 
the terrain profile that lies between the two terminals.  We shall not go into detail 
here.” 

  
23. The Algorithm does provide information as to the source of the formula for the 

next step, where it states in Section 3.2., Preparatory calculations for both modes: 
 
 “We also note here the definitions of two functions of a distance s: 

 
∆h(s)  =  (1 − 0.8 e−s/D )∆h   with D =  50 km.  Alg. (3.9) 

 
and  
 
 σh(s) =  0.78 ∆h(s) exp [− (∆h(s) /H)1/4 ]   with H = 16 meters.” Alg. (3.10) 
 

the second formula, Alg. (3.10), shows a relationship between ∆h and the terrain 
roughness factor σh used in Tech Note 101. 
 



The formula Alg. (3.9) can be manipulated for use here; replacing s in Alg. (3.9) with the 
distance (x2 –x1), the distance between the end point and the start point of the path of 
elevations considered, specified in meters;  
 
 ∆h(s)  =  (1 − 0.8 e−s/D )∆h   with D =  50 km, (50,000 meters) becomes: 
 
   ∆h(s)             =  ∆h where D = 50,000 meters,  s = (x2 − x1) 
 (1 − 0.8 e−s/D ) 
 
The term  (1 − 0.8 e−s/D ) ranges in value from .2 for s = 0, up to .706 for s = 50 km. 
 
The value obtained at Line 1290 for d1thxv, a.k.a. ∆h(s), is then divided by 1.0-
.8*exp(− (x2-x1)/50,000), a path distance adjustment factor that appears to be an 
empirical (data matching) adjustment.  For x2-x1= 1,000 m. ( 1 km) this factor divides 
the value on Line 1290 by approximately .2; for 49 km, by approximately 0.7, and for 70 
km by approximately 0.8, to obtain ∆h; 
 
Line 1291: d1thxv/=1.0-.8*exp(-(x2-x1)/50.0e3) 
 
Note:  In the FORTRAN version of this program found in Appendix B of NTIA TR-82-
100, this line reads: 
 
 D1THX=D1THX/(1.0−0.8*EXP(-AMIN1(20.,(X2-X1)/50E3))) 
 
The archaic intrinsic function AMIN1, a minimum determining function similar to min in 
c++, has been removed in the c++ version of the code. 
 
 

24. Here, subroutine delete [] is called with regard to array s; to manage the removal 
of all traces of array s from the computer’s working memory that were created by 
the command new [] on line 1262. 

 
Line 1292: delete[] s: 
 

25. The output returns the value of d1thxv; ∆h, or delta h.  
 
Line 1294:  return d1thxv;   
 
 
 



SUBROUTINE D1THX2: A functional explanation, by Sid Shumate.   
Last Revised July 27, 2008.  
 
Delta  h  (experimental) subroutine 
 
Note: Used with point-to-point mode.  Called by qlrpfl, mid-routine.  
Calls mymin, mymax, assert, zlsql, qtile. 
 
Used to find dh, (a.k.a. delta h) the terrain irregularity factor. 
 
Derived from the Irregular Terrain Model description by George Hufford, 2002, (ITMD), 
compared to the ITM.cpp prepared by J. D. McDonald and John Magliacane for 
compilation on unix and linux systems.  “Line” numbers refer to the ITM.cpp as line 
numbered by Bloodshed Software’s DevC++ print function.  “Alg” numbers refer to the 
algorithm formula in “The ITS Irregular Terrain Model, version 1.22, the Algorithm” 
(the Algorithm) by G. A. Hufford, 1995.  There are also quotes and references, in the 
background section and subroutine description, from the Appendices to Tech Note 101, 
Volume II, from  NTIA Report TR-82-100, “A Guide to the Use of the ITS Irregular 
Terrain Model in the Area Prediction Mode” (NTIA TR-82-100), and from “A manual 
for ITM, “Irregular Terrain Model”, released by the NTIA as itm_man.txt, (ITM 
Manual).  
 
Computes the terrain irregularity parameter dh from the profile elevation array pfl 
between points located at  x1 and x2.  x1 is defined as a distance from the transmitter site 
to the start point of a path of elevation points considered; x2 is defined as a distance from 
the transmitter site to the end point.  Both x1 and x2 must be specified in meters. 
 
Please note that the qlrpfl subroutine, and the d1thx, hzns and z1sq1 subroutines that are 
called during qlrpfl, were intended to be experimental early versions of L-R software.  
They are still in use today, with few modifications or corrections.  The ITM Manual 
states:  

“It should be noted that the original ITM is silent on many of the details for 
defining some of the path parameters.  This is particularly true of the effective 
heights HE, and, to some lesser degree, of the terrain irregularity parameter DH.  
The effective height, for example is defined as the height above the “effective 
reflecting plane,” and in the past the investigator has been urged to use his own 
best judgement as to where that plane should be placed. The subroutine QLRPFL, 
in trying to automate the definition of all parameters, has been forced to define 
explicitly all missing details. It has done this in a way that seems reasonable and 
in full accord with the intent of the model.   One should not, however, conclude 
that these efforts are completed. Hopefully, better results are obtainable.”       

 
Background on Delta H, (∆h), the Terrain Irregularity Parameter  
 
Also described as “∆h, the interdecile range of elevations between the two points x1 and 
x2”.  The interdecile range is a specific interquartile range; it is computed as the 



difference between the 10th and 90th percentiles. It comprises the middle 80% sample of 
the population: in this case, a set of elevation values derived from the elevation data 
contained in the pfl array.   The term x1 is defined as a distance from the transmitter site 
to the start point; x2 is defined as a distance from the transmitter site to the end point. 
We find by studying the ∆h, or delta h, used in the irregular terrain model, that the 
concept and calculation does not closely follow the definition of the terrain roughness 
factor, σh, specified in Tech Note 101.  
 
In Tech Note 101, on page 5-9, it states:   
 

“5.2.2. The terrain roughness factor, σh.  The terrain roughness factor σh 
in (5.1) is the root-mean-square deviation of modified terrain elevations, yi, 
relative to the smooth curve defined by (5.16), within the limits of the first Fresnel 
zone in the horizontal reflecting plane.  The outline of a first Fresnel zone ellipse 
is determined by the condition that: 

 
   r11 + r21 =   r1 + r2   +  λ /2  
Where:     
 

r11 + r21  is the length of a ray path corresponding to reflection from a point on  the 
edge of the Fresnel zone,  

 
r1 + r2     is the length of the reflected ray for which angles of incidence and 
reflection are equal. 
 

Norton and Omberg [1947] give general formulas for determining a first Fresnel zone 
ellipse in the reflecting plane.  Formulas are given in annex III for calculating distances 
xa and xb  from the transmitter to the two points where the first Fresnel ellipse cuts the 
great circle plane.”    
 
Later, on page 5-13, it states:  “the terrain roughness factor σh, (in Tech Note 101 here 
designated by a lowercase sigma sub h), is the root-mean-square deviation of modified 
terrain elevations relative to the curve y(x) within the limits of the first Fresnel zone in 
the horizontal reflecting plane.  The first Fresnel ellipse cuts the great circle plane at two 
points, xa and xb kilometers from the transmitter.  The distances xa and xb may be 
computed using equations (III.18) or (III.19) to (III.21) of annex III.” 
 
The root-mean-square is the square root of the average of the squares of a set of numbers.  
If we have a set of values in an array: x1, x2, x3,…,xn,  the root-mean-square can be 
computed, using a for loop, as the square root of the sum of the squared array values 
divided by n, or:  
 
 xrms  =  (( x1

2 + x2
2  + x3

2 … + xn
2 )/n)1/2  

 
Deviation refers to the amount of difference between the value being considered and the 
arithmetic mean value.  One of the most important uses of the root-mean-square is to 



determine the standard deviation from the arithmetic mean.  The standard deviation from 
the mean is the root-mean-square of the deviations from the mean.   
 
In classical statistics, the formula for calculating the variance of an unknown population 
variance is:    
  σ2  = Σ(x  − µ)2     
      N 
Here the population parameter is abbreviated with the Greek letter sigma in lower case, 
the mean is a population parameter (mu), and the number of samples is represented with a 
capital N.   The term [x  − µ] represents the difference between the sample value (x) and 
the mean value µ; this term is the deviation of the sample. 
 
The standard deviation, σ, is simply the square root of the variance, or:  
 
   σ  = ((Σ(x  − µ)2)/Ν)1/2 

 
Here we are using a sample of the total population.  For calculating statistics of a sample 
of the population, statisticians indicate that the mean is of a sample population by 
replacing µ with the arithmetic mean x, and they decrease the denominator by 1, to 
account for the percent probability that a wider deviation exists in the population than in 
the sample of the population. The formula then becomes: 
 
  σ  = ((Σ(x  − x)2)/(n))1/2 

 
Where n =  (N  − 1) 
 
If the arithmetic mean x is equal to: 
 

x = (x1 + x2
  + x3 … + xn )/n, 

 
then the standard deviation s can be computed, using a for loop, as: 
 
 s  =  (((x1 - x)2 + (x2 - x)2  + (x3 - x)2… + (xn - x)2 )/n)1/2 . 
 
The terrain roughness factor is the root-mean-square deviation of modified terrain 
elevations relative to the curve y(x) within the limits of the first Fresnel zone in the 
horizontal reflecting plane.  We can now see how to obtain the root-mean-square 
deviation of terrain height data taken from a selected part of the path between the 
transmitter and the receiver; the information is in the pfl array.  But what is meant by 
“modified terrain elevations relative to the curve y(x)”? 
 
In 5.2.1, a Curve-Fit to Terrain, found on page 5-8 of Tech Note 101, it states:   
 

“A smooth curve is fitted to terrain visible from both antennas.   It is used to 
define antenna heights h’1 and h’2, as well as to determine a single reflection point 
where the angle of incidence of a ray r1 is equal to the angle of a reflection of a 



ray r2 in figure 5.1.  This curve is also required to obtain the deviation of terrain 
heights used in computing Re in (5.1).  
 
First, a straight line is fitted by least squares to equidistant heights hi(xi) above sea 
level, and (xi )2 /(2a) is then subtracted to allow for the sea level curvature 1/a 
illustrated in figure 6.4.   The following equation describes a straight-line h(x) 
fitted to 21 equidistant values of hi(xi) for terrain between xi = x0 and xi = x20  
kilometers from the transmitting antenna.  The points x0 and x20 are chosen to 
exclude terrain adjacent to either antenna which is not visible from the other:” 
 
   h(x) = h + m(x – x )                                    (5.15a) 

 
Here, h is the arithmetic mean of the elevation heights, i.e. the average terrain height: 

             
h = ((h1 + h2

  + h3 … + h20 )/21   (5.15b, 1 of  3) 
 
x is the arithmetic mean of the distances from the transmitter site to the to x0 + x20, 
i.e. the distance from the transmitter site to the center of the x path:    

 
x  = (x0 + x20)/2     (5.15b, 2 of  3) 

 
    

m is the slope of the line.  To simplify the later calculation of the least squares 
solution, the slope is calculated with reference to an x co-ordinate referenced to 
the center of the x path.  If n is the number of elevation points, in this example 21, 
then (n-1) is equal to the number of intervals between the elevations points, equal 
in this example to 21 – 1 = 20. The center of this path of equidistant intervals is 
then at i = (n – 1)/2, or (21 – 1)/2 = 10.  So if we want to start a for loop 
calculation from the transmitter end of the path, we have to start at the 
recalibrated x path position, the interval closest to the transmitter site, in this 
example now equal to (i – 10).  So the slope calculation will start at i = 0 and 
proceed to i = 20, represented in the below calculation by i – 10, therefore 
calculating from –10 to +10.    

         
  m = 2 * (h1(i-10) + h2(i-10)  + h3(i-10) … + h20(i-10))     (5.15b, 3 of 3) 
    77 * (x20  - x0) 
  

This is a slightly different notation, but is still the same formula given in 5.15b, 
3rd of 3.    The derivation of the 2/(77*(77 * (x20  - x0))) set of terms is not 
explained in Tech Note 101; and provides a correct answer only if the number of 
increments equals 21.    

 
The derivation of a more universal version of this formula, which will work with 
any number of increments, is shown in the description of the subroutine z1sq1, 
which this subroutine, d1thx2 calls, in an attempt to perform this least-squares-fit-



to-a-line calculation.  Here, we will simply state that the version of the formula 
for the slope, m, which provides correct results for any number of increments, is:      

 
  m =   (h1(i-10) + h2(i-10)  + h3(i-10) … + h20(i-10)) 
        ((i0-10)2 + (i110)2  + (i2-10)2 … + (i20-10) 2) 
 

And is intended to be incorporated in a revised version of z1sq1, to be named 
zlsq2. 

 
After 5.15b, Tech Note 101 states:  
 
  “Smooth modified terrain values given by  
 
  y(x) =  h(x) -  x2 /(2a)      (5.16)     

 
will then define a curve of radius a which is extrapolated to include all values of x 
from x = 0 to x =d, the positions of the antennas.” 
 

Here, a represents the effective radius of the earth under the great circle signal path.  The 
- x2 /(2a) term accounts for the effective curvature of the earth; it adds the effective 
increase in terrain height due to the effective curvature of the earth, to the “flat earth” 
signal path average terrain line formula. Section 4 of Tech Note 101 describes a method 
of deriving the effective earth’s radius, a, from ns, the atmospheric refractive index at the 
surface of the earth, and ao, the actual radius of the earth. 
 
Note before reading further: The ∆h correction term defined by (6.12) in the next quote, 
mentioned after (5.17), is not the same ∆h we have previously discussed in this section.  
It is only distantly related to, and not the same as, the delta h (∆h) function calculated by, 
and result d1thx2v provided by, subroutine d1thx2. 
 
 
Continuing with Tech Note 101 after (5.16). it states:  
 
  “The heights of the antennas above this curve are: 
 
  h’1 =  hts  - h(0),       h’2  =  hrs  - h(d)    (5.17)     

 
If h’1 or h’2 is greater than one kilometer, a correction term, ∆h, defined by (6.12) and 
shown on figure 6.7, is used to reduce the value given by (5.17). 
 Where terrain is so irregular that it cannot be reasonably well approximated by a 
single curve, σh is large and Re = 0, not because the terrain is very rough, but because it is 
irregular.  In such a situation, method 3 of section 5.1 may be useful.”  
 
 
 
 



 
The Federal Communications Commission’s Terrain Roughness Factor  
 
 
The following is excerpted from the Federal Communications Commission (FCC) Rules 
and Regulations, as published as Code of Federal Regulations Title 47, Volume 4, 
Subpart B, FM Broadcast Stations, Sec. 73.313, Prediction of coverage: [CITE: 
47CFR73.313, and for the diagrams, 47CFR73.333]: 
 
    (f) The effect of terrain roughness on the predicted field strength of a signal at points 
distant from an FM transmitting antenna is assumed to depend on the magnitude of a 
terrain roughness factor (h) which, for a specific propagation path, is determined by the 
characteristics of a segment of the terrain profile for that path 40 kilometers in length 
located between 10 and 50 kilometers from the antenna. The terrain roughness factor has 
a value equal to the distance, in meters, between elevations exceeded by all points on the 
profile for 10% and 90% respectively, of the length of the profile segment. (See Sec.  
73.333, Figure 4.)  
 
    (g) If the lowest field strength value of interest is initially predicted to occur over a 
particular propagation path at a distance that is less than 50 kilometers from the antenna, 
the terrain profile segment used in the determination of terrain roughness factor over that 
path must be that included between points 10 kilometers from the transmitter and such 
lesser distances. No terrain roughness correction need be applied when all field strength 
values of interest are predicted to occur 10 kilometers or less from the transmitting 
antenna. 
 
    (h) Profile segments prepared for terrain roughness factor determinations are to be 
plotted in rectangular coordinates, with no less than 50 points evenly spaced within the 
segment using data obtained from topographic maps with contour intervals of 
approximately 15 meters (50 feet) or less if available. 
 
    (i) The field strength charts (Sec.  73.333, Figs. 1-1a) were developed assuming a 
terrain roughness factor of 50 meters, which is considered to be representative of average 
terrain in the United States. Where the roughness factor for a particular propagation path 
is found to depart appreciably from this value, a terrain roughness correction ([Delta]F) 
should be applied to field strength values along this path, as predicted with the use of 
these charts. The magnitude and sign of this correction, for any value of [Delta]h, may be 
determined from a chart included in Sec. 73.333 as Figure 5. 
 
    (j) Alternatively, the terrain roughness correction may be computed  
using the following formula: 
 
    [Delta]F=1.9-0.03([Delta]h)(1+f/300) 
 
Where: 
[Delta]F=terrain roughness correction in dB 



[Delta]h=terrain roughness factor in meters 
f=frequency of signal in MHz (MHz) 
 
    Effective Date Note: At 42 FR 25736, May 19, 1977, the effective  
date of Sec. 73.313 paragraphs (i) and (j) was stayed indefinitely. 
 
NOTE: The FCC’s terrain roughness factor is a related concept, but not the same thing, 
as the Tech Note 101 terrain roughness factor.  In Report No. R-6602, “Development of 
VHF and UHF Propagation Curves for TV and FM Broadcasting,” by Damelin, Daniel, 
Fine and Waldo, Sept.1966, it states:  
 
 “The corrections for terrain roughness are intended for application in estimating 
median (or average) field strengths over areas where the general character of the terrain is 
fairly uniform, or where there is no abrupt change in terrain roughness.  It is not possible 
to accurately predict the field strength at any given receiver site.” 
 
 
 

 
 



 
 
 



Now, on to the description of the subroutine. From ITMD Section 44: 
 
Call inputs: 
 
pfl terrain elevation profile array, starting at transmitter site and ending at 

receiver site, following great circle path, with: 
  pfl[0] =enp, the number of increments 
  pfl[1] = xi, distance per increment (in meters) 
  pfl[2] = z(0), the transmitter tower base AMSL, or elevation height 
  pfl[[np+2] = z(np), the receive location AMSL, the last elevation. 
 
&x1 x1, input from qlrpfl as xl[0], the start point of the section of the total path 

to be considered, defined as a distance (measured in meters) from the 
transmitter site.  The value is equal to the lesser of: 15 times the 
transmitter height AGL, or 1/10 of the distance from the transmitter site to 
the horizon.   

&x2 x2, output from qlrpfl as xl[1], the end point of the section of the total path 
to be considered, defined as a distance (in meters) from the transmitter 
site. The value is equal to the lesser of: 15 times the receiver antenna 
height AGL, or 1/10 of the distance from the receive site to the horizon.  

 
 
This subroutine declares the following private, or local, arguments:  
 
 Here the argument types are noted (int, and double, in this case) because this subroutine 
incorporates conversions between (int) and (double).   
 
Declared as type integers (int): 
 
np  number of points in pfl elevation array.  
 
ka equal to 1/10 of (8+length of the section of the total path to be  

considered), range limited by kmx. 
 
kb  equal to n- (ka+1). 
 
n number of intervals between the transmitter site and the end point of a 

path to be considered in this subroutine only. 
 
k  initially set to be one more than xa.  
 
kmx  maximum range limit for ka. 
 
j  counting variable in a for loop. 
 
 



Declared as type double decimal precision (double): 
 
d1thx2v  calculated terrain irregularity parameter; output from d1thx2. 
 
sn  one less than n.  The total path length, measured in increments, of path n. 
 
xa distance from transmitter to start of test path for s array. 
  
xb distance from transmitter to end of test path for s array. 
  
xc working variable for increment distance of s loop 
 
*s an array of elevations interpolated from terrain elevations in the pfl array, 

the renamed elev array relayed by the point_to_point (or 
point_to_point_two) subroutine from the wrap-around input-output 
software.    

 
This subroutine: 
 

1. Defines np, number of points, to be equal to pfl [0], the number of increments in 
array pfl. 

 
Line 1249: np=(int)pfl [0]; 
 

2. Defines xa to be equal to xl/pfl [1], equal to x1(x-one, the distance from the 
transmitter site to the start point being considered), divided by the increment 
distance, initially making double xa equal to the number of increments from the 
transmitter site to the start point of the section of the total path to be considered. 

 
Line 1250: xa=x1/pfl[1]; 
 

3. Defines xb to be equal to x2/pfl [1], equal to x2(receiver site) divided by the 
increment distance, initially making double xb equal to the number of increments 
from the transmitter site to the end point of the section of the total path to be 
considered. 

 
Line 1251: xb=x2/pfl[1]; 
 

4. Presets d1thx2v=0.0 
 
Line 1252: d1thx2v=0.0. 
 

5. An if statement used to check if (xb - xa<2.0).  If the number of increments in the 
considered path is less than 2, indicating a path length too short to calculate 
d1thx2v, it causes the program to exit, returning d1thx2v = 0.0 . 

 



Line 1254: if  (xb-xa<2.0) 
Line 1255:  return d1thx2v;  
 

6. The variable ka is set to be equal to 1/10 of (xb-xa+8), or 1/10 of (8+length of the 
section of the total path to be considered, measured in increments), then sets the 
range of ka to be between 4 and 25 increments.  This will be the start point of the 
delta-h analysis path. 

 
 Since ka is declared as an int, the data used to calculate its value must be int; but the 
declared local xb and xa are of type double.   The function, by stating (int) after the 
equal sign and before the calculation, forces (creates) an output that is (int).       
 
 

Line 1257: ka=(int)(0.1*(xb-xa+8.0));  
In ITM:  ka=mymin(mymax(4,ka),25); 
 

7. Sets value of n equal to (10 times ka) – 5; since ka is limited in range to between 
4 and 25, then n is limited in range to between 35 and 245 increments.  

 
NOTE:  In ITM, the limitation of ka to be a maximum of 25 increments CREATES AN 
ARCHAIC, PROBLEM-CAUSING RANGE LIMIT FOR n, FAR TOO SMALL FOR 
TODAY’S 90 METER (3 ARC-SECOND), 30 METER (1 ARC-SECOND) AND 10 
METER ( 1/3 ARC-SECOND) PATHS, WITH THOUSANDS OF INTERVALS.  It 
limits n to a maximum of 245 times 111 m, or 27 km, for 3 arc-second database interval 
sizes, which is marginally acceptable; but it limits the maximum consideration to only 
9.065 km for 1 arc-second database all-points intervals, and 3.02 km for 1/3 arc second 
database all-points intervals.  In the ITWOM version, this subroutine has been modified 
to set ka based on path length of up to 20 kilometers, as per TN101 section 5.2.1.  TN101 
uses 20 km as a suggested range to include the majority of the middle 80% of terrain for 
line-of-sight paths.  This is a gross simplification that assumes that this middle 80% of 
terrain can be approximated by a straight line, an assumption that fails for highly 
irregular terrain.  
 
The FCC regulations for their version of [delta] h specifies a minimum 10 km, and up to 
a 50 km maximum, limit; the n limit of 7.35 km for 1 arc-second database all-points 
intervals, and 2.45 km for 1/3 arc second database intervals, are both below the minimum 
FCC limit for consideration.  
 
In continuing the comparison to the FCC’s terrain consideration rules, we find that FCC 
47CFR73.7313 indicates that the consideration of terrain roughness extends from n = 10 
to 50 km; i.e. the maximum length of the path to be considered was 50 km, the 
calculation was to be made using terrain information on the signal path starting at 10 km 
and extending to the receive point, up to a maximum of 50 km.  No consideration was to 
be made for terrain roughness if the path was less than 10 km.  The length of n, being 10 
times ka less 5, can only compare well with the 10 to 50 meter maximum range of the 
FCC’s delta h determination method, unless ka = 1, where n would = 5; since ka is range-



limited to be not less than 4, this is not possible.  So let us look at another part of the FCC 
regulations; where a minimum number of 50 increments over the 40 km consideration 
path section are required.  Converting from paper maps to a digital database, this is 1.2 
increments per km, equivalent to an 830-meter database, or roughly equivalent to, and 
therefore compatible with, the 900 meter GLOBE 30 arc-second database utilized by the 
Windows version of the ITM (itm.exe), made available by NTIA.      
 
The maximum and minimum limits for ka, therefore, need to be set based upon the path 
lengths, not the number of intervals.  We only need to reset the maximum limit, as ka is 
calculated to be far less than xb.   It would be in accordance with the FCC guidelines to 
limit the maximum length of n to 50 km, or 50,005 meters.  Distance in meters can be 
converted to intervals by dividing by pfl[1], the increment width.  But for now we will 
remain with the ITM convention of 20 km. 
 
On Line 1245; in dithx2, we have added kmx, between k, and j on the int declaration line.   
 
The units of pfl[1] is meters/increment, so the d1thx line: 
 
 ka=mymin(mymax(4,ka),25); 
 
should be replaced by:  
 

kmx=mymax(25,(int)(20005/(pfl[1]))); 
 ka=mymin(mymax(4,ka),kmx); 
 
Line 1258r sets the kmx, or ka maximum, to be the maximum of 25 or the integer value 
of x2, the path length to the transmitter end of the short path considered, divided by 10 
times the interval width, leaving kmx measured in increments.  For example, for a 3-arc-
second database with maximum 90 m. intervals, the interval width is approximately 79 
meters; for a 20 km (12.4 mi.) total path, kmx would be limited to approximately 25 
intervals, and for a 1-arc second database would be limited to approximately 76 intervals.   
The limit of 25 intervals is replaced with kmx, which divides the limiting distance of 
25000 meters by the width of the interval to provide a maximum number of intervals. 
  
END FIRST CORRECTION NOTE.   Returning to the discussion of d1thx2; 
 
The argument n is set to be equal to 10 times ka, less 5 intervals, in intervals. 
 
Line 1259: n=10*ka-5 
  

8.    Sets value of kb equal to n-ka+1, or equal to 10*ka-5-ka+1 = 9*ka-4. 
 
Line 1260: kb= n–ka+1 
 

9. Sets value of sn equal to n-1, the total path length, measured in increments, of 
path n. 



 
Line 1261: sn=n-1,  
 

10.   Calls subroutine assert with input parameters (s=new double[n+2]) !=0).  
assert is a standard c function prototype that, in c++, returns an error message and 
aborts the program if the expression, in this case s=new double[n+2], is equal to 
zero, i.e. the expression is false.  If n +2 = 0, the program aborts, returning an 
error message.  Note the use of new to create and allocate memory for the s array, 
and of double to declare the s array values to be doubles, where n was declared as 
an integer (int).     

 
Line 1262: assert (s=new double[n+2]) !=0) 

 
11. Sets value of array value s[0] equal to sn, which is equal to the length, in 

increments, of the path considered, also = (n – 1). 
 
Line 1263:  s[0]= sn    
 

12. Sets value of array value s[1] equal to 1.0 
 
Line 1264: s[1]=1.0 
 

13. Sets value of xb to be equal to (xb-xa)/sn, where: 
 
(xb, prior to step 13) = the number of increments from the transmitter site to x2,  
the end point of the path considered. 
xa = the number of increments from the transmitter to the start point, x1, of the 
path considered. 
sn is the length of the path considered, measured in increments. 
 
So (xb-xa) is the length, measured in increments, of the path between x1 and x2.  
xb is redefined to be the length of the path between x1 and x2, divided by the 
length of sn,  the length of the “n” path defined by 10*ka – 6, measured in 
intervals.  This makes xb equal to the ratio of: the length of the x1 to x2 path, to 
the length of the “n” path derived from ka.   

 
Line 1265: xb=(xb-xa)/sn 
 
Warning!  This causes computational error of if ka is restricted so that the value of sn 
causes xb to exceed 1.0.  
 

14. Sets value of k equal to xa+1.0, equal to the number of increments from the 
transmitter to the start point, plus one.  The use of (int) after the equal sign allows 
and forces a calculation using (double) xa, to produce an integer result.  The value 
of xa is truncated, not rounded off, to zero decimal places, so 3.9 and 3.3 both 
would calculate as 3, i.e. if xa is 3.9, k = 3 +1 = 4, if xa is 3.3, k = 3 +1 = 4.   



 
 Line 1266: k=(int (xa+1.0)); 
 
 
NOTE CHANGE BELOW FOR TEST PURPOSES; REPLACES XA BY XC FOR 
FOR/WHILE LOOP USE. 

15. Here, the original version of the ITM resets the value of double xa by subtracting 
value of k.   However, the value of xa is needed later; so the argument ac has been 
declared and substituted here for the ITWOM.  The use of the (double) before k 
allows and forces a type double result to a calculation incorporating the integer 
(int) k.  Since k =  (xa +1), with the value truncated to zero decimal places by the 
double to integer conversion, this calculation will produce a double xa that is 
equal to the value of xa less the value of (xa +1) truncated to no decimal places, 
resulting in xa = a negative value, between -1 and slightly negative of zero.  The 
new xa value after the calculation on line 1267 is equal to the negative of the 
amount to the right of the decimal point of xa prior to the calculation on line 
1267. 

  
Line 1267: xa-=(double (k)); 
 
For test purposes, replaced by: 
 
Line (new): xc=xa-(double (k)); 
 

16. Initiates for loop, starting with j=0, continuing until j=n; 
 
Line 1269: for (j=0, j<n; j++) 
 

a. A while loop is initiated within the for loop, running while xc > 0.0 and 
k<np.  When xc is greater than zero, it:  

i. Subtracts 1 from xc. 
ii. Increments the value of k, increasing the value of k by 1. 

 
Note that k is not incremented after it reaches k=np, so as not to exceed the quantity of 
terrain data stored in pfl. 
 
Line 1271: while (xc>0.0 && k<np) 
Line 1273:  xc-=1.0; 
Line 1274:  ++k 
 
The for loop then continues;  
 

b. It sets value of s[j+2) equal to pfl[k+2]+(pfl[k+2]-pfl[k+1])*xc,  
c. And then redefines the value of xc, this time equal to xc + xb. 
 

Line 1277: s[j+2]= pfl[k+2]+(pfl[k+2]-pfl[k+1])*xc 



Line 1278: xc=xc+xb 
 
An interesting sequence of events happens in this for loop.  The loop populates the s 
array elevation values in s array positions s[2] to s[n +1], i.e. s[ (n –1) + 2] with values 
derived from the values in the pfl array.  Derived is the key word here; the values in pfl 
from pfl array locations pfl [k+2], with k incrementing approximately every 2nd s array 
increment, and proceeding toward location pfl [np –1], are being interpolated to fill a set 
of intervals equal to  (n –1), the number of intervals in path “n”, with interval widths 
equal to the intervals in path “n”.    
 
 

17. Subroutine z1sq1 is then called, with inputs (s , 0.0, sn) where: 
 

s is an array with values: 
s[0] = sn  (see 11. above) 
s[1] = 1.0  (see 12. above) 

       s[2….(n-1)] =  elevations calculated in for loop (see 16. above) 
        
      0.0  indicating that z1sq1 is to start at the s array elevation value stored in s[2]. 
      sn       which is equal to the length, in increments, of the path considered, also = 

(n – 1), indicating that z1sq1 is to continue considering the s array 
elevation values all the way to the value stored in s [n + 1], i.e. s ((n –
1)+2).  

     
Output values of z1sq1: 
 
      xa   now redefined as the z0, or value of average terrain height line at 

transmitter site. 
  

xb working variable; after z1sq1 called, is the z1, or value of average terrain 
height line at receiver site. 

  
18. z1sq1 then returns:  

 
xa = z0, the elevation value of the average terrain line at the transmitter site. 
xb = z1, the elevation value of the average terrain line at the receive site. 

   
19.    The value of xb is then again redefined to be equal to (xb-xa)/sn, or (the 

elevation value of the average terrain height at the receive site above the elevation 
value of the average terrain height at the transmitter site), divided by (n – 1).  

 
Line 1282: xb=(xb-xa)/sn   
 

20.    A for loop is initiated, starting at j=0; running until j is no longer less than n. 
 
Line 1284: for (j=0; j<n; j++) 



 
a. The loop first subtracts the value of xa from s[j+2], subtracting the 

average elevation height calculated by z1sq1 from the first elevation 
height in the s array, leaving as a value, only the amount of deviation, in 
meters, from the average height, stored in the each of the s array locations.  

 
In Tech Note 101, at 5.16, the term [–x2/(2a)], adding consideration of the effective 
curvature of the earth, is added to the straight line formula y(x) = h(x), and to the 
elevation heights, before the plotting of the terrain and calculation of the deviations.  
However, since here we are not plotting, and the deviations are being obtained by 
subtracting the straight-line formula results, (the value of xa as incremented by the for 
loop), from the terrain heights (found in the s array values prior to processing by this for 
loop), the effective curvature term would cancel out.  Therefore, the values of the 
elevation deviations obtained and stored in the s array will be the same with or without 
consideration of the effective earth radius.     

 
Line 1286:   s[j+2]-=xa 

 
b. It then adds the value of (double) xb to (double) xa.  As the loop advances, 

this causes the value of xa to proceed from the z0 value to the z1 value, 
following along the average elevation height line y= a + bx calculated by 
z1sq1.   

 
Here again this subroutine branches off from following Tech Note 101, specifically, the 
description of methodology and procedure specified for determining the terrain roughness 
factor, σh, described in Tech Note 101 at 5.2.2.  In its place, the subroutine determines a 
related value, described as a delta h  [∆h ].  First, note that this ∆h is NOT the same as the 
∆h correction term defined by Tech Note 101 at (6.12), a term that is to be applied only 
when the effective heights of the transmitter and/or receiver are greater than a kilometer 
above sea level.  It is related to, but not the same as, the delta h (∆h) function calculated 
by, and result d1thx2v provided by, subroutine d1thx2. 
 
 
The subroutine d1thx is described in Appendix A of NTIA Report TR-82-100, “A Guide 
to the Use of the ITS Irregular Terrain Model in the Area Prediction Mode”, as:  
 

“Computes the terrain irregularity parameter dh from the profile pfl between 
points at x1 [less than] x2.  

 
And in the ITMD, d1thx is described as:       
 
Using the terrain profile pfl we find ∆h, the interdecile range of elevations between the 
two points x1 and x2”. 
 
The interdecile range is a specific interquartile range; it is computed as the difference 
between the 10th and 90th percentiles. It comprises the middle 80% sample of the 



population.   The term x1 is defined as a distance from the transmitter site to the start 
point; x2 is defined as a distance from the transmitter site to the end point. 
 
Why is this quantile-based system used to derive ∆h?  Quantiles are less susceptible to 
long tailed distributions and outliers.  Since the elevation data may have anomalies, such 
as voids in SRTM data, causing outliers far removed from the mean, as long as the 
outliers are less than 10% of the total data, causing them to be lost in the lower 10% 
and/or upper 10% of data that is abandoned in the qtile subroutine, this methodology 
provides more accurate results than means and other moment-related statistics. 
 
Further explanation of quantiles can be found in the chapter on the qtile subroutine, 
which d1thx2 calls below in order to determine the 10th and 90th percentile quantiles. 
   
Line 1287: xa=xa+xb 

    
21.     qtile is a subroutine that returns a quantile.  The subroutine qtile is called twice, 

with the same path length (n-1), using array s and starting at s array location s[2]; 
once for quantile (ka-1), intended to be the 90th percentile quantile, and the second 
time for quantile (kb-1), the 10th percentile quantile.  The s+2 term causes the 
subroutine to skip the s array locations s[0] and s[1] which store the increment 
length and quantity values, and start with the elevation values in s[2]. 

  
22. The value of d1thx2v is set to be equal to the difference between the two quantile 

values obtained from the deviation-from-average-terrain values in the s array, 
equal to quantile (ka-1)-quantile (kb-1).   

 
Line 1290: d1thx2v= qtile(n-1,s+2,ka-1)-qtile(n-1,s+2,kb-1) 
 
With regard to describing the methodology and procedure to this point, for determining 
this ∆h, the interdecile range of elevations between the two points x1 and x2”, the NTIA 
is not specific.  George Hufford stated in the Algorithm, Section 1.3:  
 

“These quantities, together with ∆h, are all geometric and should be determined from 
the terrain profile that lies between the two terminals.  We shall not go into detail 
here.” 

  
23. The Algorithm does provide information as to the source of the formula for the 

next step, where it states in Section 3.2., Preparatory calculations for both modes: 
 
 “We also note here the definitions of two functions of a distance s: 

 
∆h(s)  =  (1 − 0.8 e−s/D )∆h   with D =  50 km.  Alg. (3.9) 

 
and  
 
 σh(s) =  0.78 ∆h(s) exp [− (∆h(s) /H)1/4 ]   with H = 16 meters.” Alg. (3.10) 



 
the second formula, Alg. (3.10), shows a relationship between ∆h and the terrain 
roughness factor σh used in Tech Note 101. 
 
The formula Alg. (3.9) can be manipulated for use here; replacing s in Alg. (3.9) with the 
distance (x2 –x1), the distance between the end point and the start point of the path of 
elevations considered, specified in meters;  
 
 ∆h(s)  =  (1 − 0.8 e−s/D )∆h   with D =  50 km, (50,000 meters) becomes: 
 
   ∆h(s)             =  ∆h where D = 50,000 meters,  s = (x2 − x1) 
 (1 − 0.8 e−s/D ) 
 
The term  (1 − 0.8 e−s/D ) ranges in value from .2 for s = 0, up to .706 for s = 50 km. 
 
The value obtained at Line 1290 for d1thx2v, a.k.a. ∆h(s), is then divided by 1.0-
.8*exp(− (x2-x1)/50,000), a path distance adjustment factor that appears to be an 
empirical (data matching) adjustment.  For x2-x1= 1,000 m. ( 1 km) this factor divides 
the value on Line 1290 by approximately .2; for 49 km, by approximately 0.7, and for 70 
km by approximately 0.8, to obtain ∆h; 
 
Line 1291: d1thx2v/=1.0-.8*exp(-(x2-x1)/50.0e3) 
 
Note:  In the FORTRAN version of this program found in Appendix B of NTIA TR-82-
100, this line reads: 
 
 D1THX=D1THX/(1.0−0.8*EXP(-AMIN1(20.,(X2-X1)/50E3))) 
 
The archaic intrinsic function AMIN1, a minimum determining function similar to min in 
c++, has been removed in the c++ version of the code. 
 
 

24. Here, subroutine delete [] is called with regard to array s; to manage the removal 
of all traces of array s from the computer’s working memory that were created by 
the command new [] on line 1262. 

 
Line 1292: delete[] s: 
 

25. The output returns the value of d1thx2v; ∆h, or delta h.  
 
Line 1294:  return d1thx2v;   
 
 
 



SUBROUTINE FHT: A functional explanation, by Sid Shumate.   
Last Revised July 1, 2007. 
 
Function Height-Gain for Three-Radii method; subroutine: fht. 
 
Note: Used with both point-to-point mode and area mode.  Called by adiff.  
 
Descriptions derived from the Irregular Terrain Model description by George Hufford, 
2002, (ITMD), compared to the ITM.cpp prepared by J. D. McDonald and John 
Magliacane for compilation on unix and linux systems.  “Line” numbers refer to the 
ITM.cpp as line numbered by Bloodshed Software’s DevC++ print function.  “Alg” 
numbers refer to the algorithm formula in “The ITS Irregular Terrain Model, version 
1.22, the Algorithm” by G. A. Hufford, 1995. 
 
From ITMD Section 14: 
 
Calculates the height-gain over a smooth spherical earth – to be used in the “three radii” 
method.  The approximation is that given in [Alg 6.4]. 
 
Note that in the Algorithm, in the first paragraph in Section 6, “Addenda – numerical 
approximations”, from which the formulas below are taken, George Hufford states: 

 
“Part of the algorithm for the ITM consists in approximations for the standard 
functions that have been used.  In these approximations, computational simplicity 
has often taken greater priority than accuracy.”  

 
Call inputs: 
& x 
& pk 
 
Declares private, or local, arguments:  
w 
fhtv height gain over a smooth spherical earth 
 
This subroutine: 
 

1. Initiates an if statement.  If x is less than 200, then w is set to be = ( −log(pk)). 
 

Line 133:     if (x<200.0) 
   if (x<200.0) 

  w=-log(pk); 
  

2. An if statement is nested within the first if statement.  If x is less than 200, and; pk 
is less than 1.0e−5, or if (x*w3) is greater than 5,495, then:  

a. fhtv is set to be equal to −117.0; 
b. An if statement is nested within the second if statement.  Therefore: 



(1.)  if x is less than 200,  and: 
(2.)  pk is less than 1.0e−5, or (x*w3) is greater than 5,495, and: 
(3.) x is greater than 1.0, then: 

c. fhtv is reset to be equal to 17.372 *log (x) + value of  fhtv from 2(a). 
 

Line 138: if (pk<1.0e-5 || x*w*w*w > 5495.0) 
  { 
   fhtv=-117.0; 
 
   if (x>1.0) 
    fhtv=17.372*log(x)+fhtv  [Alg. 6.5] 

} 
  

3. The second if statement, found on line 138, has an offsetting else statement.  So 
if: 

a. x is less than 200,  and: 
b.   pk is not less than 1.0e−5, or (x*w3) is not greater than 5,495, then: 
fhtv is reset to be = (2.5e −5)*(x2/pk) −(8.686*w) −15.0 [Alg. 6.6] 

 
Line 145: else 
   fhtv=2.5e-5*x*x/pk−8.686*w−15.0; 

 } 
 
4. The first if statement, found on line 133, has an offsetting else statement.  So if x 

is greater than or equal to 200, then: 
 
fhtv is reset to be = 0.05751*x−4.343*log(x)   [Alg. 6.3]  
  

  An if statement is nested within this else statement.  So if the value of x is greater 
than or equal to 200, and less than 2000, then: 

a. w is set to be equal to 0.0134*x*exp(−0.005*x) 
b. fhtv is reset to be = (1.0-w)* fhtv+w*(17.372*log(x) −117.0)  

 [Alg. 6.4]  
 

Line 149: else 
  { 
   fhtv=0.05751*x-4.343*log(x); 
   if (x<2000.0) 
   { 
    w=0.0134*x*exp(-0.005*x); 
    fhtv=(1.0-w)*fhtv+w*(17.372*log(x)-117.0); 
   } 
  } 
  

5. Subroutine fht then returns fhtv, the height-gain over a smooth spherical earth.    



SUBROUTINE H0F: A functional explanation, by Sid Shumate.   
Last Revised July 15, 2007. 
 
H0 Frequency gain function for scatter fields; subroutine: h0f. 
 
Note: Used with both point-to-point mode and area mode.  Called by ascat.  
 
Descriptions derived from the Irregular Terrain Model description by George Hufford, 
2002, (ITMD), compared to the ITM.cpp prepared by J. D. McDonald and John 
Magliacane for compilation on unix and linux systems.  “Line” numbers refer to the 
ITM.cpp as line numbered by Bloodshed Software’s DevC++ print function.  “Alg” 
numbers refer to the algorithm formula in “The ITS Irregular Terrain Model, version 
1.22, the Algorithm” by G. A. Hufford, 1995. 
 
From ITMD Section 25: 
 
This is the H01 function for scatter fields as defined in the Algorithm, Section 6,  
“Addenda – numerical approximations.” 
 
Background:  
 
From the Algorithm, Section 6,  “Addenda – numerical approximations.”  
 
 This section starts by mentioning:  

 
“Part of the algorithm for the ITM consists in approximations for the standard 
functions that have been used.  In these approximations, computational simplicity 
has often taken greater priority than accuracy.”   

 
The Algorithm later states, following equation (6.9): 
 

“The frequency gain function may be written as  
 
  H0  =  H00(r1 , r2 , ηs , ) +∆H0     (6.10) 
 where 
  ∆H0  = 6 (0.6 − log ns) * log ss  * log r2/ss r1   (6.11) 
 

and where H00 is obtained by linear interpolation between its values when ns is an 
integer.  For ηs = 1, …, 5 we set 
 

H00(r1 , r2 , j ) =  ½[ H01(r1 , j ) + H01(r2 , j )     (6.12) 
 
with 
 
 H01(r , j )   =     10 log (1 + 24r-2 + 25 r-4)  for j = 1,   (6.13) 
          10 log (1 + 45r-2 + 80 r-4)  for j = 2, 



   10 log (1 + 68r-2 + 177 r-4)  for j = 3, 
   10 log (1 + 80r-2 + 395 r-4)  for j = 4, 

    10 log (1 + 105r-2 + 705 r-4)  for j = 5. 
 

For ηs > 5, we use the value for ηs = 5, and for ηs = 0 we suppose  
 
H00(r1 , r2 , 0) =10 log [(1 + (2)1/2/ r1)2  (1 + (2)1/2/ r2)2 * (r1  +  r2 )/(r1 + r2 +2(2)1/2)] 
          (6.14) 
  

In all of this, we truncate the values of ss and q = r2 / ss r1  at 0.1 and 10.” 
 
 
Call inputs for subroutine h0f: 
r twice the angular distance th, (measured in a ratio of meters, vertical to meters, 

horizontal, not radians as in TN101 Section 9.2)  times the effective height of the 
terminal antenna (r1 = transmit, r2 = receive) in meters, divided by a wavelength 
at the frequency selected, in meters.  Units (for itm.cpp) cancel out to be 
dimensionless, not radians as in TN101 Section 9.2.  

et the value of η s , the “scatter efficiency factor” 
 
Declares private, or local, arguments:  
 
double a[5]={25.0, 80.0, 177.0, 395.0, 705.0}; 
double b[5]={24.0, 45.0,  68.0,  80.0, 105.0}; 
double q,  
double x; 
double h0fv,  
double temp;  
int it; 
 
This subroutine: 
 

1. Presets it to be equal to: the integer value of input value et, (which is equal to the 
value of ηs, the scatter efficiency factor).  This follows from the statement in the 
Algorithm, Section 6, following equation (6.11), which states: “and where H00 is 
obtained by linear interpolation between its values when η s is an integer. 

 
Line 170:  it=(int)et;  
 

2.  Initiates an if statement.  If it is less than or equal to zero, then: 
a. the value of it is reset to be equal to 1. 
b. q is set to be equal to 0.0. 

  
Line 172:    if (it<=0) 
  { 
  it=1; 



  q=0.0; 
   } 

 
3. An else if statement follows; if it, at line 172, was equal to or greater than 5, then:  

a. the value of it is reset to be equal to 5. 
b. q is set to be equal to 0.0. 

 
Line 178:  else if (it>=5) 
  { 
   it=5; 
   q=0.0; 
  }   
 
Steps 2 and 3 prepare for the use of the procedure associated with equations [Alg. 6.12 
and Alg 6.13] stated in the background section, above. 
 
 

4. An else statement follows; so if it, at line 172, was more than 0, and less than 5, 
then:  

 
q is set to be equal to the value of et, less the value of it. 

 
Line 184: else 
  q=et-it;      
  

5. The value of temp is set to be equal to (1/r), and then the value of x is set to be 
equal to the value of temp2.   The value of x therefore becomes equal to (1/r)2. 
 

Line 189:  temp=1.0/r; 
  x=temp*temp; 
 

The value of h0fv is set to be equal to:  4.343 * log((a[it-1]*x+b[it-1])*x+1.0); this 
calculates the  H01(r , j ) =  10 log (1 + (b)r-2 + (a) r-4)  for j = it -1, as per [Alg 
6.13], except that the constant multiplier value 4.343 replaces the constant 
multiplier value 10.   
 

Why is the 10 replaced with 4.343?  The obvious expectation is that it is due to the 
nonstandard units of angular measure used for th, which was used to calculate the values 
of r1 and r2 in the ascat subroutine, which later called this subroutine.  The angular 
distance, th, a.k.a. θ, or theta) is calculated and defined as (vertical distance in 
meters/horizontal distance in meters) in the code, instead of in radians.   
 
Tech Note 101 states that θ is in units of radians.   George Hufford, the author of the 
Algorithm, does not note  the use of any such conversion factor in the Algorithm 
equations 6.13 and 6.14, which use the constant multiplier value 10, that is correct for r1 
and r2 calculated with θ defined in units of radians.   



  
In the equation [Alg. 4.62], in Section 4.3.1, “The Function Ascat.” the angular distance θ 
is still being specified in radians, as becomes clear in Section 6, equations [Alg 6.13 and 
6.14].   
 
How do we convert θ, a.k.a. th, to radians?   There are 2π radians in a full cycle, or 360o.  
A radian is defined as the angle subtended at the center of a circle by an arc of 
circumference that is equal in length to the radius of the circle.  Draw this construct on a 
circle, with one radii of length r on the horizontal plane, and a distance of r on the 
circumference between the two radii.  Now draw a vertical line from the point where the 
non-horizontal radii touches the circumference of the circle, to a point perpendicular to 
the horizontal radii, forming a right triangle. The radius then becomes the hypotenuse of a 
right triangle with an angle, subtended at the center of the circle, between the two radii, 
of one radian, or 57.2958 degrees.  The length of the vertical line is then equal to the sine 
function of the angle θ, which is equal to the ratio of the length of the vertical line to the 
length of the hypotenuse of the triangle, which is equal to r.  So we can now obtain the 
length of the vertical line by multiplying sin θ by the hypotenuse length, r. This results in 
the equation: 
    V = (sin θ) * r   
 
The length of the horizontal line is then equal to the cosine function of the angle θ, which 
is equal to the ratio of the length horizontal line of the triangle to the length of the 
hypotenuse of the triangle, which is equal to r.  So we can obtain the length of the 
horizontal line by multiplying cos θ by the hypotenuse length, r. This results in the 
equation: 
    H = (cos θ) * r   
 
We can now obtain the ratio of the vertical length to the horizontal length by dividing the 
equation for Y by the equation for X. and canceling out the “r” terms:  
 
   V/H = [(sin  θ) * r] / [ (cos θ) * r ]  =  (sin θ)/(cos θ)  
 
In trigonometry, by definition of the tangent function, tan x =  (sin x) / (cos x), so the 
equation becomes:  
 
   V/H =  (tan θ) in radians 
 
This can be used to convert from the angle in radians or degrees, to the ratio used for θ 
in the code, but we also need to know how to convert from the vertical-distance-to- 
horizontal-distance ratio (V/H ratio) used for th, to radians, in case we later run into a 
formula that cannot handle the V/H ratio.  For this we use the arctan subroutine function:   
 
   arctan (V/H) = θ in radians (rads) 

 
Here, we will attempt to utilize these conversion ratios.    

 



 
Line 192:  h0fv=4.343*log((a[it-1]*x+b[it-1])*x+1.0); 
  

6. Initiates an if statement.  If q , which holds the difference value between (double) 
et and (integer) it, is not equal to zero (which would indicate et = it),  then:  h0fv 
is set to be equal to:  

 
(1.0-q) * h0fv+q*4.343*log((a[it]*x+b[it])*x+1.0) 

 
Here the value of h0fv is interpolated.  The H01 value for it is calculated to be: 
   H01(for it) = 4.343 * log((a[it]*x+b[it])*x+1.0).   The term (1 – q) interpolates 
the H01 value calculated for it , the integer value of ηs, the scatter efficiency factor, 
to approximate the H01 value for et = ηs.  
 
This is calculated as per [Alg 6.13], except that the constant multiplier value 
4.343 replaces the constant multiplier value 10.  Why? I thought the answer was 
the units of measure of th, used in calculating r1 and r2 , and I still hold that 
opinion.  But a single change of a constant value, from 10 to 4.343, will not do the 
job properly; as the equations use values of  (r1)2, (r2)2 , (r1)4 and (r2)4 multiplied 
by varying constants. 

 
MAJOR PROBLEM NOTE:  Therefore, since r1 and r2   were calculated with a value 
of th in the wrong units, it appears to this author that the subroutine will produce 
errant and erratic results; the replacement of the constant value 10 by 4.343 may have 
occurred in order to produce results that were somewhat close to the empirical results 
from the field measurements.  The author finds no other solid mathematical basis for 
the change from 10 to 4.343 in the equations in the code. 

   
How can this be corrected?  By using the equation:   
 

 arctan (V/H) = θ in radians (rads) 
 
To convert the unit value of th to radians prior to its use in calculating r1 and 
r2; and replacing the constant 4.343 with the correct constant, 10, stated in [Alg. 
6.13 and 6.14], in subroutines hof and ascat. 
  

Line 194: if (q!=0.0) 
 
  h0fv=(1.0-q)*h0fv+q*4.343*log((a[it]*x+b[it])*x+1.0); 

  
7. Subroutine h0f  ends by returning the H01 (r, et) function output value stored in 

h0fv:  
 
Line 197:  return h0fv; 

 
 



SUBROUTINE HZNS2: A functional explanation, by Sid Shumate.   
Revised 16 October, 2010, matching itwom 2.0u.cpp to add post obstruction 2ray calcs. 
Previously revised 23 Sept. 2010.  
Previous revision Aug. 2010 To correct calculation of location and height of receiver 
obstructions. 
 
HoriZoNS for ITWOM, subroutine hzns2 
 
Note: Used with point-to-point mode.  Called by qlrpfl, mid-routine.  
 
Derived from the Irregular Terrain Model description by George Hufford, 2002, (ITMD), 
compared to the ITM.cpp prepared by J. D. McDonald and John Magliacane for 
compilation on unix and linux systems.  “Line” numbers refer to the ITM.cpp as line 
numbered by Bloodshed Software’s DevC++ print function.  “Alg” numbers refer to the 
algorithm formula in “The ITS Irregular Terrain Model, version 1.22, the Algorithm” by 
G. A. Hufford, 1995.   “TN101” numbers refer to the formulas in “National Bureau of 
Standards Technical Note 101; Transmission Loss Predictions for Tropospheric 
Communications Circuits, Volumes I and II,” as revised January 1, 1967. (NBS TN101, 
or TN101). 
 
From ITMD Sections 44 and 47: 
 
Background; Part I: Tech Note Section 6.4, Equation 6.15: 
 
NBS TN101 defines “launch angles” for the signal path line as it leaves the transmitter 
site, and as it arrives at the receive site.   These launch angles, described as θet, the 
angular elevation of the transmit horizon ray, and θer, the angular elevation of the receive 
horizon ray, may be determined by field survey or from a terrain profile plot, and are 
computed in the ITM using: 
 
   θet = [(hLt − hts) / (dLt )] − (dLt/2a) and θer = [(hLr − hrs) / (dLr )] − (dLr /2a)  [TN101 6.15] 
 
 where: 

hLt, hLr  are the heights of the horizon obstacle (or obstacle peaks), above 
mean sea level 

hts, htr   are antenna elevations above sea level, (i.e. effective height of 
antenna above ground level plus the ground elevation height above 
mean sea level)   

dLt, dLr  are the distances from the terminals (the transmit site and the  
receive site) to the horizon (obstacle peak). 

a  the effective earth’s radius ( utilized in the c++ code as gme, the 
effective earth’s curvature, where gme is equal to 1/a.)   

 
From the NBS TN101, Volume I, Section 6.4, note that it states:  “As a general rule, the 
location of a horizon obstacle is determined from the terrain profile by using [TN101 
6.15] to test all possible horizon locations.   The correct horizon point is the one for 



which the horizon elevation angle θet or θer is maximum.  When the trial values are 
negative, the maximum is the value nearest zero.” 
 
Background; Part II: A mathematical proof for the conversion of a measurement of the 
length ratio of the non-hypoteneuse sides of a right triangle, to an angle measured in 
radians.  
 
How do we convert θ, a.k.a. th, calculated as a vertical to horizontal ratio in rectangular 
co-ordinates, to radians?   There are 2π radians in a full cycle, or 360o.  A radian is 
defined as the angle subtended at the center of a circle by an arc of circumference that is 
equal in length to the radius of the circle.  Draw this construct on a circle, with one radii 
of length r on the horizontal plane, and a distance of r on the circumference between the 
two radii.  Now draw a vertical line from the point where the non-horizontal radii touches 
the circumference of the circle, to a point perpendicular to the horizontal radii, forming a 
right triangle. The radius then becomes the hypotenuse of a right triangle with an angle, 
subtended at the center of the circle, between the two radii, of one radian, or 57.2958 
degrees.  The length of the vertical line is then equal to the sine function of the angle 
θ, which is equal to the ratio of the length of the vertical line to the length of the 
hypotenuse of the triangle, which is equal to r.  So we can now obtain the length of the 
vertical line by multiplying sin θ by the hypotenuse length, r. This results in the equation: 
 
    V = (sin θ) * r   
 
The length of the horizontal line is then equal to the cosine function of the angle θ, which 
is equal to the ratio of the length horizontal line of the triangle to the length of the 
hypotenuse of the triangle, which is equal to r.  So we can obtain the length of the 
horizontal line by multiplying cos θ by the hypotenuse length, r. This results in the 
equation: 
    H = (cos θ) * r   
 
We can now obtain the ratio of the vertical length to the horizontal length by dividing the 
equation for Y by the equation for H. and canceling out the “r” terms:  
 
   V/H = [(sin θ) * r] / [ (cos θ) * r ]  =  (sin θ)/(cos θ)  
 
In trigonometry, by definition, the tangent function is: tan θ =  (sin θ)/(cos θ), so the 
equation becomes:  
   V/H =  (tan θ)  
 
Here we will refer to the units as radians, as in c++ code, the trigonometric functions 
report out in radians, not degrees.  This can be used to convert from the angle in radians, 
to the ratio used for the take-off angle in the code, but we also need to know how to 
convert from the vertical-distance-to- horizontal-distance ratio (V/H ratio) used for th, to 
radians.  For this we use the arc tangent (a.k.a. tan-1) subroutine function:   
 
   atan (V/H) = θ , in radians (rads) 



 
Conversely, when the need arises to convert the effective earth curvature, gme, to 
a height to distance ratio, we use: 
  tan(gme)= earth curvature as a tangent ratio, vertical/horizontal. 
 

These conversion ratios will be used below.    
 
Subroutine Call inputs: 
 
pfl terrain elevation profile array, starting at tx, ending at rcvr, following great 

circle path, with: 
  pfl[1] =enp, the number of increments 
  pfl[2] = xi, distance per increment  
  pfl[3] = z(0), the transmitter tower base AMSL, or elevation height 
  pfl[[np+3] = z(np), the receive location AMSL, the last elevation. 
 
Inputs from (and later outputs to) prop_type &prop structure, consisting of: 
(not all  structure elements listed here are used by hzns.) 
  aref the reference attenuation 
  dist total propagation path distance  (in km?) 
  hg(0) transmitter site radiation center above ground level (RCAGL). 
  hg(1) receive site radiation center above ground level (RCAGL). 
  wn the wave number  = freq. in MHz/47.7 MHz*m.; units in 1/meters. 
  dh delta H, (∆h), the terrain irregularity factor  
  ens refractivity of the atmosphere at sea level 
  gme      effective earth curvature,  (actual + refraction) 
  zgndreal      resistance component of earth impedance  
  zgndimag    reactive component of earth impedance 
  he(0)       effective height of transmit antenna   
  he(1) effective height of receive antenna 
  dl(0) transmitter antenna horizon (or highest “visible” obstacle) distance  
  dl(1) receive antenna horizon (or highest “visible” obstacle) distance 

the(0)  take off angle, at transmit terminal, from the antenna to the 
transmit horizon or highest “visible” obstacle.  

the(1)  take off angle, at receive terminal, from the antenna to the receive 
horizon or highest “visible” obstacle.  

  kwx the error indicator value, a.k.a. errnum, or error number 
mdp     the mode of propagation model used.  The mdp mode code is:  

   - 1 point to point mode 
     1  initializing area prediction mode 
     0  area prediction mode has initialized and is continuing 
 
defines private, or local, arguments:  
 
wq “false” if q is less than zero during for loop; (true=entire path is Line of 

Sight.) 



np  number of points in pfl elevation array  
xi  increment distance between points in pfl elevation array  
za transmitter site radiation center height above mean sea level (RCAMSL), 

in meters. 
zb  receive site antenna center height above mean sea level in meters. 
qc  equal to ½ of the effective earth curvature (gme); units in 1/meters 
q utility variable; starts as half of the effective earth curvature times the path 

distance, is redefined several times to represent the working variable at the 
moment. 

sb distance, in meters, from receive site to elevation point being studied in 
the for loop 

sa distance, in meters,  from transmit site to elevation point being studied in 
for loop 

dr the path length divided by the sum of 1 plus the ratio of the receive height 
AMSL to the transmitter height AMSL, i.e. the distance from the 
transmitter to the reflection point for a 2-ray calculation 

dor first, the distance between the receive site obstruction peak and the 2-way 
reflection point after the last obstruction, to which the distance from the 
transmitter to the last obstruction is added to create the distance between 
the transmitter and the post-obstruction reflection point. 

dshh  distance between obstacle peaks, in meters 
 
integers: 
 
rp  Integer value of reflection point, first for l-o-s, later for post-obstruction.  
 
 
 
 
 
 
 
This subroutine: 
 

1. Defines np, number of points, to be equal to pfl[0]. 
 
Line 1067: np=(int)pfl (0); 
 
 

2. Defines xi, increment distance, in meters/increment, to be equal to pfl [1]. 
 
Line 1068: xi=pfl (1); 
 

3. Calculates za to be equal to the transmitter site ground elevation height, pfl[2], 
added to prop.hg[0], the transmitter site radiation center height above ground 
level (RCAGL).  za becomes the transmitter site radiation center height above 



mean sea level. (RCAMSL).   [Note: for dual database use, prop.hg must be 
adjusted to compensate for the height difference between the pfl array database 
and the ground level database, and may be a negative number.]    

 
Line 1069: za=pfl[2] +prop.hg[0] 
 
 

4.  Calculates zb, the receive site reception center above mean sea level, using pfl 
[np+2], the last elevation point, and prop.hg[1], the receive site height above 
ground level.  [Note: for dual database, prop.hg must be adjusted to compensate 
for the height difference between the pfl array database and the ground level 
database, and may be a negative number.]    

 
Line 1070: zb= pfl[np+2] +prop.hg[1] 
 
  

5. In subroutine alos2, to avoid having to load the entire pfl array into lrprop2, and 
then into alos2, we can put the 2-ray coefficients to be used in alos2 and mpath in 
the prop array.  We can then retrieve these values from the prop array while in 
hzns2, as well as move the calculation of rp, the reflection point, and hrp, the 
height of the reflection point, to hzns2.  So we have added new in hzns2: 

 
6. Include new parameter values in the prop array: 

a. Set prop.tiw = xi, the increment distance between points in pfl elevation 
array. 

b. Set prop.ght = za, the transmitter site radiation center height above mean 
sea level (RCAMSL), in meters. 

c. Set prop.ghr = zb, the receive site antenna center height above mean sea 
level in meters. 

 
Line new: prop.tiw=xi 

prop.ght=za 
prop.ghr=zb  

 
7. Calculates qc , to be equal to one-half of gme, the effective actual earth curvature.  

The constant gme, (a.k.a. prop.gme), equal to 157e-9 /meter, is the inverse of 
earth’s effective radius.  

 
Line 1071:  qc= 0.5*prop.gme 
 

8. Calculates q to be equal to qc, half of the effective earth curvature, times 
prop.dist, the propagation path total distance.   

 
Line 1072: q=qc*prop.dist; 
 



Why does this use ½ of the earth curvature?  For each degree of effective earth curvature, 
the grazing angles between the transmitter and receiver increases by ½ degree.   This can 
be seen if considering the case where a transmitter is at the north pole, and the receiver is 
on the equator.  The receiver is located theoretically ¼ of the circumference around the 
earth from the transmitter, where the earth curvature is -π/2 radians (-90 deg.).  For this 
situation, compared to horizontal at the north pole, the downward angle from horizontal 
at the north pole to the equator is -π/4 radians (-45 deg.), or ½ of the earth curvature 
angle. Similarly, if the transmitter is at the north pole, and the receiver is at the south 
pole, the earth curvature is -π radians (-180 deg.), and the transmitter look down angle 
increases to the maximum of -π/2 radians (-90 deg.). 
 

9. Temporarily presets prop.the[1] , which will later represent the receive antenna 
angle of departure toward the horizon, to be equal to the height of the receive 
antenna, zb, above the height of the transmit antenna, za, divided by the path 
distance, prop.dist.   If the receive antenna is below the transmit antenna, this will 
be a negative number.  Provides the change in height between the receive antenna 
and transmit antenna divided by the path distance, or the ratio of difference in 
height to the path distance; this can also be stated as representing the flat-earth 
tangent of the angle prop.the[0], the transmitter grazing angle.  Units should be in 
meters for the heights and distances.    This is more accurately calculated in the 
ITWOM by taking the arctangent of this calculation to obtain the angle in radians. 

 
Line 1073: prop.the[1] =atan((zb-za)/prop.dist); 
 

10. Presets prop.the[0] , the transmitter look-up, or grazing, angle to be equal to 
prop.the[1] , the receiver grazing angle calculated above, less the value held by 
utility argument q, which at this moment holds the additional angle due to the 
effective earth curvature.  This adds the effective earth curvature angle between 
the transmitter and receiver to the starting-point transmitter look-up angle.  If the 
transmit antenna is below the receive antenna, this will be a negative number.   

 
 

11.  Then presets prop.the[0], the  transmitter take-off angle,  to be the change in 
height between the transmit antenna and receive antenna divided by the path 
distance, less the path distance divided by the effective earth radius, or: 

 
In the ITM: 
 the[0]= difference in height between tx and receiver −  0.5∗ path distance      
   total path distance                    effective earth radius 
 
In  the ITWOM: 
 the[0]= arctan(height difference between tx and receiver −  0.5∗ path distance_              
    total path distance)              effective earth radius 
 

[TN101 6.15a] Units should be in radians.  But the first term in the ITM version is 
in meters of height per meter of distance, i.e. the tangent of an angle, and the 



second is in radians.  In the ITWOM, both are in radians due to the use of the 
arctangent above. 

 
Line 1074: prop.the[0] =prop.the[1] – q; 

 
12. Recalculates prop.the[1] to be equal to the negative sum of prop.the[1] and the 

current value held by q, or: 
 
In the ITM: 

 the[1]= difference in height between receiver and tx, −  0.5*path distance
    total path distance         effective earth radius 
 
[TN101 6.15b] Units should be in radians.  But the first term is in meters of height 

per meter of distance, the tangent of an angle, and the second term is in radians.  We use 
the arctangent in the ITWOM to obtain the more correct value for the angle. 

 
In the ITWOM: 

the[1]=arctan(height difference between receiver and tx, −  0.5*path distance 
    total path distance)        effective earth radius 
 

  Line 1075: prop.the[1] = – prop.the[1] – q; 
 
Note:  Either the[1] or the[0] will be negative, indicating which site is lower, unless they 
are equal, indicating that the transmitter is the same height as the receiver.  However, 
reportedly, the[0] = the[1] may cause a calculation problem later. 

 
Here we have a take-off angle calculation problem.  This is not due to the error 
specified by Hammett and Edison in several comments to the FCC regarding the use 
of Longley Rice for TV reception prediction; that is a problem with the wrap-
around input-output software.  These problems are in the ITMDLL 1.2.2 core.   
 
The calculation problem here can be tracked back all the way to Tech Note 101, 
Section 6.4; and relate to equation [TN101 6.15].   The problem appears to come 
from not keeping track of units, especially when mixing co-ordinate systems.   
 
The first term of the equations in 6.15 is calculated as a vertical distance change 
over a horizontal distance change ratio, i.e. a tangent of an angle, in rectangular co-
ordinates over theoretical flat earth.  But TN101 specifies, in Section 6 in the 
paragraph preceding [TN 6.15], that all angles are to be in radians unless otherwise 
specified.  
 
The second term, (1/2*path distance/effective earth’s radius), adds the angle 
reduction due to the curvature of the earth and refractivity; it divides a partial 
circumference of a circle by a radius, and is therefore, by definition, in polar 
geometric co-ordinates, resulting in output units in radians.  
 



 For a smooth earth model calculation, this is an approximation that works fine, as 
the error at a smooth earth horizon distance, from not converting the term: 
(distance in height between terminals/total path distance) to radians, does not show 
up until the eighth decimal place.   But for Irregular Terrain Model calculations 
with a nearby obstruction, or take off angles calculated at the base of a tall tower, 
skyscraper, or mountain on which is located a transmit terminal, the error becomes 
significant.  So the ITWOM uses arctan (in c++, the atan command) to convert the 
flat earth angle between the transmitter and receiver to a value in radians. The 
second place we apply the correction occurs when recalculating the take-off angles 
to obstruction peaks for maximum accuracy.  
 

13.  Presets both prop.d1(0), the actual transmitter to horizon distance, and 
prop.d1(1), the actual receiver to horizon distance, to be equal to the propagation 
path distance prop.dist, which is true for a clear line-of-sight path only.  If the 
path is line-of-sight, this will remain the default value. 

 
Line 1076: prop.dl[0] = prop.dist; 

 prop.dl[1] = prop.dist; 
 

14. Presets:  
a. hht, the height of the highest obstacle or horizon “visible” from the 

transmitter site, and  
b. hhr, the height of the highest obstacle or horizon “visible” from the 

receive site, to both be 0.0 meters.   
c. Also presets prop.los to be equal to 1, indicating a line-of-sight condition.  

 
Line  : hht=0.0; 

 hhr=0.0; 
  prop.los=1; 
 

15. If there are at least two points, a minimum of the transmitter and receiver, or 
more, then: 

 
Line 1079: if (np>=2) 
 

16. The value of sa is preset to be equal to 0.0.  The argument sa will represent the 
distance from the transmitter site to a elevation point being considered.  Setting sa 
to 0.0 starts the following loop calculation from the transmitter site.   

 
Line 1081: sa = 0.0; 
 

17. The value of sb is preset to start at the path distance, prop.dist.   The argument sb 
will hold the distance from the receive site to an elevation point being considered.  
This second for loop works from the receive site toward the transmit site.   

 
Line   :  sb=prop.dist; 



 
 

18.  A for loop is started that starts with i = 1 and continues until i is no longer less 
than the number of elevation points np.  This causes it to consider each elevation 
point individually along the path from the transmitter to the receiver, starting with 
the first point past the transmitter. 

 
Line 1085: for (j=1; j<np; j++) 
 

a. sa starts at 0.0, and is increased at the start of each pass by an amount 
equal to xi, the interval distance between elevation points, measured in 
meters.  sa then represents the distance between the transmit terminal and 
the elevation point being studied, with units in meters. 

  
Line 1087: sa+=xi; 
 

b. q will represent the difference between the height of the profile elevation 
point height being considered on this loop, and the height represented by 
the theoretical height of a theoretical point at the same distance from the 
transmit antenna as the profile elevation point, calculated from the current  
transmitter take off (grazing) angle value held in prop.the[0].    It is 
calculated by taking pfl[j+2], the elevation point height being studied on 
this loop, and subtracting the combination of:  

i. the effective curvature angle in radians of the earth (actual + 
refraction) between the transmitter and the point being studied, 
(qc*sa), added to the take-off angle prop.the[0], all multiplied by: 

ii. The distance between the transmitter and the profile elevation 
point, sa.   NOTE: This is not a precise calculation; multiplying the 
angle by the distance is a polar, not Cartesian, solution, and is, for 
this purpose, an adequate approximation, not a rigorous 
trigonometric solution.  

iii. Finally, the transmitter elevation above mean sea level (za) is also 
subtracted.  

 
If the value held by q is greater than zero, there is an obstruction at this 
location that blocks the transmitter’s view of the receiver and is higher than 
any other obstruction found so far; and the vertical distance q represents the 
vertical distance change at the obstruction that must be added to the horizon 
take-off angle to compute the take off angle from the terminal to the peak of 
the most recently found candidate to be the highest “visible” transmitter 
obstruction found, during the sweep along the radial occurring in this loop.   
 

Line 1089: q=pfl[j+2]−(qc*sa+prop.the[0])*sa − za; 
 

c.  If a point is reached during the for loop where q is greater than 0.0, 
indicating that either the actual horizon, and/or a first diffraction point as 



seen from the transmitter, has been reached, the value of prop.los, line of 
site, is set to zero,  prop.the[0], the transmitter take-off angle, is increased 
by an amount equal to q/sa, to direct it toward the top of the horizon point 
and/or diffraction point, and prop.dl[0] is made equal to sa, the path length 
between the tx and elevation point being studied, now the transmitter 
horizon/first diffraction point.  

d. Angle prop.the is limited to a maximum of 1.569 radians. 
e. Prop.hht, the transmitter side obstruction height, is reset to be equal to 

pfl[j+2]. 
f. The Boolean argument wq is set to “false”, indicating that the entire path 

will NOT be a line-of-sight study. 
 
Line 1091: if (q>0.0) 
       { 
         prop.los=0; 

prop.the[0]+=q/sa; 
prop.dl[0]=sa; 
prop.the[0]=mymin(prop.the[0],1.569); 
prop.hht=pfl[j+2]; 
wq=false; 

       } 
 
In the ITM hzns subroutine, for the purposes of calculating the receiver 
grazing angle, if a horizon or obstruction was found, the same terrain point 
found to be the transmitter horizon peak or the highest obstruction visible 
from the transmitter, was assumed to be the peak of the receive horizon or 
highest obstruction visible from the receiver.  This is a very poor 
simplification. 
 
In the ITWOM hzns2 subroutine, the grazing angle to the receiver horizon, or 
highest obstruction “visible” from the receiver, is calculated separately, if a 
transmitter horizon or obstruction is found: 
 
 (2). If wq is not true, (i.e. if wq is “false”, indicating that the path includes a 
horizon or at least one obstacle), a for loop is initiated to calculate the receiver 
take off (a.k.a. grazing) angle for a receiver beyond the obstruction or horizon.  
The counter is set to 1 to start at the last interval point before the receive site, 
and the interval points considered will step from the one nearest the receiver, 
toward the transmitter.   
 

Line  : If (!wq)  
{ 
 for(i=1; i<np i++) 
 { 
 
For each pass through the for loop: 



a. The distance sb has an interval’s width subtracted from it. 
b.  q will represent the difference between the height of the profile elevation 

point height being considered on this loop, and the height represented by 
the theoretical height of a theoretical point at the same distance from the 
receive antenna as the profile elevation point, calculated from the current  
receive take off (grazing) angle value held in prop.the[1].    It is calculated 
by taking pfl[np+2− i], the elevation point height being studied on this 
loop, and subtracting the combination of:  

iv. the effective curvature angle in radians of the earth (actual + 
refraction) between the receiver and the point being studied, 
(qc*(prop.dist - sb)), added to the receiver antenna take-off angle 
prop.the[1], all multiplied by: 

v. The distance between the receiver and the profile elevation point, 
(prop.dist-sb).   NOTE: This is not a precise calculation; 
multiplying the angle by the distance is a polar, not Cartesian, 
solution, and is, for this purpose, an adequate approximation, not a 
rigorous trigonometric solution.  

vi. Finally, the receiver elevation above mean sea level (zb) is also 
subtracted.  

 
If the value held by q is greater than zero, there is an obstruction at this 
location that blocks the receiver antenna’s “view” of the transmit antenna, and 
is higher than any other obstruction found so far; and the vertical distance q 
represents the vertical distance change at the obstruction that must be added to 
the receive horizon take-off angle to compute the take off angle from the 
receive terminal to the peak of the most recently found candidate to be the 
highest “visible” receive obstruction found, during the reverse sweep along 
the radial occurring in this loop.   
 

Line  :  sb= − xi; 
q=pfl[np+2-i] − (qc*(prop.dist-sb)+prop.the[1])*(prop.dist-sb) − zb; 

 
If the value of q is greater than zero, indicating that a new horizon or new 
“highest obstruction visible from the receiver” has been found, then: 
 

a. The receive antenna “look up”, or grazing, angle, prop.the[1], is set to 
equal the existing value of the look up angle, plus the additional new 
angle increase approximated by dividing the value of q by the distance 
from the receiver to the horizon or obstacle. 

b. The value of prop.the[1] is then limited to be between 1.57 and –1.568 
radians, to avoid computer calculation errors. 

c. The value of the horizon height for the receiver, prop.hhr, is set to 
equal the terrain height at the obstacle, in meters AMSL, read from the 
profile at pfl(np+2-i). 

d. The value of prop.dl[1] is made equal to prop.dist less sb, and limited 
to be no less than zero, (which would indicate that the receiver horizon 



is at the obstruction peak), and the receive horizon distance is the 
distance from the receive site to the last obstruction peak visible from 
the receive antenna. 

e.   At the end of the if loop, prop.the[0] should then indicate the flat-
earth take-off angle to the most distant obstruction peak “visible” (to 
the RF signal) from the transmitter site, and prop.dl[1] should indicate 
the distance to the most distant obstruction peak visible from the 
receive site.  Because of rounding errors, this distance is limited to a 
minimum of 0.0 meters.  

 
Line  :  If (q>0.0)  
   { 

prop.the[1] +=q/(prop.dist – sb); 
prop.the[1]=mymin(prop.the[1],1.57); 

   prop.the[1]=mymax(prop.the[1], − 1.568); 
   prop.hhr=pfl[np+2 − i]; 

prop.dl[1]=mymax(0.0,prop.dist − sb); 
  } 
      } 
 
 

19. The grazing angles are, for speed, calculated using an approximation that may 
slightly miscalculate the final value of the grazing angles.  Now that that is done, 
before exiting the if loop, if(!wq), that is executed when obstacles are found, we 
recalculate the grazing angles for maximum accuracy, all in units of radians, using 
the transmitter RC-AMSL, sa, the receiver RC-AMSL, sb, and the newly 
calculated values for the transmitter obstacle height AMSL, prop.hht, the receiver 
obstacle height AMSL, prop.hhr, the transmitter to obstacle distance in meters, 
prop.dl[0], and the receiver to obstacle distance in meters, prop.dl[1]. 

 
Line    : prop.the[0]=atan((prop.hht-sa)/prop.dl[0])-0.5*gme*prop.dl[0]; 
  Prop.the[1]=atan((prop.hhr-sb)/prop.dl[1])-0.5*gme*prop.dl[1];  
 } 
    } 
 
  

20.  Returning to the calculation of coefficients for alos2 and mpath, it is now 
possible to reasonably estimate the reflection point for 2-ray calculations for line-
of-sight or post-obstruction scenarios.  If one or more obstacles are found in the 
path, indicated in an if statement by the receive site horizon path, prop.dl[1], 
being shorter than the total path distance, prop.dist, then: 

 
Line(new):  if((prop.dl[1])<(prop.dist))  

 {  
  



21.  Here we calculate coefficients for use in subroutine mpath, for 2-ray calculations 
after an obstruction.  The last obstruction peak is treated as if it were a secondary 
transmitter site.  To obtain the location (in terms of the database interval number) 
for the reflection point rp in mpath after a single or 2nd obstruction, and then 
retrieve this terrain height value from pfl and store this height in prop.rph2, we 
define argument dr as the distance in meters from the last obstruction peak, which 
we treat as a pseudo-transmitter site, to the reflection point.  For a reflection off of 
the earth’s surface, we simplify to say that the grazing angle of the line from the 
transmit antenna to the reflection point, with respect to a horizontal reflecting 
surface at the reflection point, is equal to the grazing angle of the line from the 
receive antenna to a horizontal reflecting surface at the reflection point.  
Therefore, using the receive obstruction height AMSL in meters, prop.hhr: 
 
 prop.hhr/dr = tangent of the grazing angle = zb/(prop.dl[1] – dr)  
 
Where: za is the transmitter site radiation center height above mean sea level 

(RCAMSL), in meters. 
zb is the receive site antenna center RCAMSL in meters. 

  prop.dl[1] is the distance from the highest obstruction peak visible from 
the receive site, to the receive site. 

 
This does assume that the reflection point height is near sea level.  A better 

approximation is to assume that the reflection point height is near the height of the 
receiver ground level, a reasonable assumption when the receive height is 10 meters 
or less.   Recalculating, then: 

 
(prop.hhr-pfl[np+2])/dr = tangent of the grazing angle = prop.hg[1]/(prop.dl[1] – dr)  

 
 
From this, we get:  (prop.dl[1] – dr)/dr = prop.hg[1]/(prop.hhr-pfl[np+2]) 
Then:    prop.dl[1] = dr(prop.hg[1]/(prop.hhr-pfl[np+2]) + dr  
     prop.dl[1]=dr(1+(prop.hg[1]/(prop.hhr-pfl[np+2])) 
 
So:   dr = prop.dl[1]/(1+ prop.hg[1]/(prop.hhr-pfl[np+2])) 

 
 To which we add the distance from the transmitter to the last obstruction peak, 
derived from the total path distance, prop.dist, less the receive site horizon distance, 
prop.dl[1], redefining dr as the distance from the main transmit site to the 2-ray reflection 
point, and we have: 

dr = prop.dist – prop.dl[1] + prop.dl[1]/(1+ prop.hg[1]/(prop.hhr-pfl[np+2])) 
 
or: dr = prop.dist – prop.dl[1](1 –  1/(1+ prop.hg[1]/(prop.hhr-pfl[np+2])) 

 
Line new: dr= prop.dist – (1 – 1/(1+ prop.hg[1]/(prop.hhr-pfl[np+2])))* prop.dl[1]; 
  } 
 



22.  An else statement follows, so for an unobstructed, or line-of-sight scenario: 
 

Line new:  else 
{ 

 
23. To obtain the location (in terms of the database interval number) for the reflection 

point rp, for a line-of-sight path, as used in subroutine alos2, and then retrieve this 
terrain height value from pfl and store this height in prop.rph, we define dr as the 
distance in meters from the transmitter site to the reflection point.  For a reflection 
off of the earth’s surface, we simplify to say that the grazing angle of the line 
from the transmit antenna to the reflection point, with respect to a horizontal 
reflecting surface at the reflection point, is equal to the grazing angle of the line 
from the receive antenna to a horizontal reflecting surface at the reflection point.  
Therefore: 
 
 Za/dr = tangent of the grazing angle = zb/(prop.dist – dr)  
 
Where: za is the transmitter site radiation center height above mean sea level (RC-

AMSL), in meters. 
zb is the receive site antenna center RC-AMSL in meters. 

  prop.dist is the total path distance from transmitter site to receive site. 
 
This does assume that the reflection point height is near sea level.  A better 

approximation is to assume that the reflection point height is near the height of the 
receiver ground level, a reasonable assumption when the receive height is 10 meters 
or less.   Recalculating, then: 

 
(za-pfl[np+2])/dr = tangent of the grazing angle = prop.hg[1]/(prop.dist – dr)  

 
 
From this, we get:  (prop.dist – dr)/dr = prop.hg[1]/(za-pfl[np+2]) 
Then:    prop.dist = dr(prop.hg[1]/(za-pfl[np+2]) + dr  
     prop.dist=dr(1+(prop.hg[1]/(za-pfl[np+2])) 
 
So:   dr = (prop.dist)/(1+ prop.hg[1]/(za-pfl[np+2])) 
  

 
Line new:  dr=(prop.dist)/ (1+ prop.hg[1]/(za-pfl[np+2])); 

}  
 

24. The else statement ends, and dr is used to compute rp, the interval value in the pfl 
array corresponding to the reflection point.  The argument dr, the distance in 
meters to the reflecting point, is divided by the width of a database interval, in 
meters, resulting in a value for the distance in intervals from the transmitter to the 
reflection point for a line-of-sight (l-o-s) calculation.   The value of the argument 
rp is then stored in prop.rpl:  



 
  rp = 2+int(floor(0.5+dr/xi)); 
  prop.rpl = rp;   
 

Note: floor, a math.h subroutine not previously used in this set of subroutines, 
returns the largest integral value less than the value of: (0.5+dr/xi).  The 0.5 added 
in, causes it to operate like a rounding function. The int causes the answer to be an 
integer, for which rp is declared.  The integer value two is added to rp because the 
elevation values in the c++ pfl array start at pfl[2].  For fortran, this is 3, as the 
elevation values in the fortran pfl array start at pfl[3].  The integer value of rp will 
then be used to retrieve the elevation height above mean sea level (AMSL) from 
the elevation database array pfl, storing it in prop.rph:  
 

Line new:  rp=2+int(floor(0.5+dr/xi)); 
  prop.rpl = rp;   

 prop.rph=pfl[rp]; 
 prop.rpd=dr; 

 
 

25.   hzns returns: 
Outputs to prop_type structure: 

a. prop.the[0] horizon take-off angle from transmitter  
b. prop.the[1] horizon take-off angle from receiver 
c. prop.dl[0] distance from transmitter to horizon (or 1st obst.) 
d. prop.dl[1] distance from receiver to horizon (or last obstacle) 
e. prop.rpl location of 2-ray reflection point in array pfl[] 
f. prop.rph height of 2-ray reflection point in meters AMSL 
g. prop.rpd distance from transmitter to 2-ray reflection point 
 
 

 
And the subroutine has completed its run. 
 
Finally, a note regarding a famous protest: 
 
Hammett and Edison, in their October of 2004 comments submitted to the Federal 
Communications Commission (FCC) in CS Docket 98-201, regarding the use of 
Longley-Rice in calculating Grade B TV Signal Coverage, stated in paragraph 20: 
 
 “This ongoing work has convinced us that the implementation of the L-R model is even 
more flawed than had been originally suspected. For example is has come to light that the 
OET-69 software calculates the depression angle to a calculation point using the sources 
height above ground, not its height above sea level.   This coding mistake by itself will 
introduce errors of perhaps 10-20 dB in the calculation results.”   
 



The code studied here does not, in and of itself, contain this error. In step 3 above, za, the 
transmitter height used for the angle calculations, is the transmit antenna height above sea 
level, determined by adding the transmitter site ground elevation height, pfl[2], to 
prop.hg[0], the transmitter site radiation center height above ground level (RCAGL). The 
same is true of zb, the receive antenna height above sea level. The original claimed 
source of the error spoken of by Hammett and Edison still exists, it exists in the original 
data preparatory subroutines written for OET-69 to prepare the information for the ITM 
subroutines, not in the ITM 1.2.2 code, including the new version 7, publicly released by 
the NTIA since 2003.  
 
If an FCC engineer requests it, a new updated subroutine command allows for 
“corrected” calculation to be made. 



SUBROUTINE LRPROP: A functional explanation, by Sid Shumate.   
 
Last Revised: July 26, 2007. 
 
Longley-Rice Propagation subroutine lrprop. 
 
Note: Used with both point-to-point and area modes.  For point-to-point mode, called at 
end of qlrpfl.  Calls subroutines adiff, alos, ascat, mymin, and mymax. 
 
Derived from the Irregular Terrain Model description by George Hufford, 2002, (ITMD), 
compared to the ITM.cpp prepared by J. D. McDonald and John Magliacane for 
compilation on unix and linux systems.  “Line” numbers refer to the ITM.cpp as line 
numbered by Bloodshed Software’s DevC++ print function.  “Alg” numbers refer to the 
algorithm formula in “The ITS Irregular Terrain Model, version 1.22, the Algorithm” by 
G. A. Hufford, 1995.  “ITS67” numbers refer to the algorithm formulas in “ESSA 
Technical Report ERL 79-ITS 67, Prediction of Tropospheric Radio Transmission Over 
Irregular Terrain, A Computer Method – 1968” by A.G.Longley and P.L.Rice.  
 
 
From ITMD Sections 4, 5 to 9, 15; 16, and 17 with 18 and 19, and 20 with 21, 22 and 23: 
 
The Longley-Rice propagation program.  This is the basic program; it returns the 
reference attenuation aref.  This is the “PaulM” version of lrprop; “Freds lrprop”, found 
in version 1.2.2, was removed from version 7.0 when it was released on June 26, 2007. 
 
 
Call inputs: 
 
d  path distance 
 
Prop_type 
 
&prop  array prop with array elements: 
 
propa_type 
 
&propa array propa with array elements: 
 
defines private, or local, arguments:  
wlos static boolean argument; true if line-of-sight coefficients have been 

calculated. 
wscat static boolean argument; true if troposcatter coefficients have been 

calculated.  
dmin static double argument; minimum acceptable path distance length in 

meters  
xae  static double argument; value calculated in Step 11. 



 
prop_zgnd  sub array zgnd (average ground impedance) with elements: 
   prop.zgndreal   resistance element of ground impedance 
   prop.zgndimag  reactive element of ground impedance 
a0 
a1 
a2 
a3 
a4 
a5 
a6 
 
d0 
d1 
d2 
d3 
d4 
d5 
d6 
 
wq Boolean argument; indicates whether general case 1 or general case 2 

applies in calculating line of sight coefficients. 
q  working variable; holds  various values during several operations 
j either 0 (1 in Fortran), for transmit terminal, or 1 (2 in Fortran) for receive 

terminal 
 
 
This subroutine: 
 

Uses d, prop_type, propa_type, and other information in arrays prop and propa in 
order to calculate aref, the reference attenuation (radio signal strength loss) along the 
path between a transmit site and a receive location. 

 
1. An if statement is initiated; it operates from lines 675 to 714.  If  prop.mdp, the 

mode of the propagation model, is not equal to zero, (zero would have indicated 
that the area prediction mode has initiated and is continuing), then the mode of the 
propagation model is either 1, which would initialize the area prediction mode, or 
–1, which indicates the program is running in the point to point mode.  If 
prop.mdp = 0, the program proceeds to the for loop on line 677.  If prop.mdp is 
not zero, then: 

 
Line  675: if (prop.mdp!=0) 
    

2.  A for statement is initiated with two loops, j=0 and j=1.   
 



a. The first loop sets dls[0], the distance from the transmitter site to the 
smooth earth horizon, to be equal to the square root of 2 times prop.he[0] 
divided by prop.gme. 

 
The algorithm formula comes from: “ESSA Technical Report ERL 79-ITS 67, 
Prediction of Tropospheric Radio Transmission Over Irregular Terrain, A 
Computer Method – 1968” by A.G.Longley and P.L.Rice, where it states on page 
12;   
“When individual path profiles are not available, median values of the horizon 
distances dL1, 2  are estimated as functions of the median effective antenna heights 
he1 and he2 determined above, the terrain irregularity factor ∆h, and the smooth-
earth horizon distances DLs1  and DLs2 .  The smooth earth distance from each 
antenna to its horizon over a smooth earth is defined as:  

 
DLs1, 2 = (.002 * a * he1, 2).5   in km.    [ITS67 (5a)] 
  

where the effective antenna heights he1, 2 are in meters and the effective earth’s 
radius a is in kilometers, as defined by (1).” 

   
NOTE: Note the first phrase of the quote above, authored by Longley and Rice.  Ms. 
Longley and Mr. Rice did not intend this formula to be use where individual path 
profiles are available; therefore, this subroutine is eligible for revision and 
correction.  For more information, please see the notes in the chapter on subroutine 
qlrpfl, which also uses these formulas for point-to-point calculations.  
 
 
 Converting ITS67 (5a) for meters instead of km, we obtain: 
 
  DLs1, 2 = (2 * a * he1, 2).5   in meters.   
 
 As derived in the chapter on subroutine qlrpfl, in step 11: 
 

a  = 1/ gme. 
 
Where:     a is the earth’s effective radius, in meters, and  
  gme is the earth’s effective curvature, in units of 1/meters.  
 

The formula then becomes:  
 

  DLs1, 2 = (2 * he1, 2/gme).5   in meters.  [Alg. 3.5] 
 
 

And in the computer, he[0] is he1, gme is stored in array prop at prop.gme; and the 
result, DLs1, is stored in array propa at propa.dls[0].    

 



b. Similarly, the second loop sets dls[1], the distance from the receive site 
to the smooth earth horizon, equal to the square root of 2 times prop.he[1] 
divided by prop.gme. 

 
Line 677:   for (j=0; j<2; j++) 
   propa.dls[j]= sqrt(2.0*prop.he[j]/prop.gme); 
 
 
   

3. The program then proceeds to:   
a. sets propa.dlsa, the sum of the smooth-earth horizon distance, equal to the 

sum of propa.dls[0] and propa.dls[1], which were calculated in step 2 
above, based on: 

 
  The sum of the smooth-earth horizon distance is  

 
DLs  =  DLs1  +   DLs2              [ITS67 (5b) or Alg. 3.6] 

  
b. sets propa.dla, the  total distance between the antennas and their horizons, 

equal to the sum of propa.dl[0] and propa.dl[1], based on: 
 
 

The total distance, dL, between the antennas and their horizons is  
 

   dL  =  dL1  +   dL2            [ITS67 (5d) or Alg. 3.7] 
 

c. sets propa.tha to be equal to the greater of either (1) the sum of the theta 
angles stored in prop.the[0] and prop.the[1], or (2) the result of 
multiplying (− propa.dla (calculated in step 3(b)), times prop.gme, the 
effective earth’s curvature): 

 
tha= greater of: ( the1+the1) or (-dla*gme)          [Alg. 3.8] 
 

 
d. sets the Boolean value of wlos and wscat to be false, as per instruction in 

ITMD Section 6: 
 
Line 680: propa.dlsa=propa.dls[0]+propa.dls[1]; 
  propa.dla=prop.dl[0]+prop.dl[1]; 
  propa.tha=mymax(prop.the[0]+prop.the[1],-propa.dla*prop.gme); 
  wlos=false; 
  wscat=false; 
 
 
 
 



In Steps 4 through 9, the program checks the parameter ranges of the input values, 
as per instructions in ITMD Section 7. 
 

4.   An if statement is initiated to check if the frequency is within range; the wave 
number, prop.wn, which is derived from the frequency in step 2 of subroutine 
qlrps, is checked to see if it is less than .838 (equivalent to a frequency of 40 
MHz) or greater than 210 (equivalent to a frequency of 10 GHz).  If prop.wn is 
outside of the range, prop.kwx, the error marker, is set to equal the greater of: the 
existing value of prop.kwx; or 1.    

 
Line 686:  if (prop.wn<0.838 || prop.wn>210.0) 
   prop.kwx=mymax(prop.kwx,1); 
     

5. A for statement is initiated with two loops, j=0 and j=1.   
 

a. An if statement is initiated to check if hg[0], the transmitter antenna height 
above ground level, is within range; if hg[0] is less than one meter or 
greater than one kilometer, prop.kwx, the error marker, is set to equal the 
greater of: the existing value of prop.kwx; or 1. A value of kwx = 0 
indicates: no warning; kwx = 1 indicates: caution; parameters are close to 
limits. 

   
b. An if statement is initiated to check if hg[1], the receiver antenna height 

above ground level, is within range; if hg[1] is less than one meter or 
greater than one kilometer, prop.kwx, the error marker, is set to equal the 
greater of: the existing value of prop.kwx; or 1.    

 
Line 689:   for (j=0; j<2; j++) 
   if (prop.hg[j]<1.0 || prop.hg[j]>1000.0) 
    prop.kwx=mymax(prop.kwx,1); 
 

6. A for statement is initiated with two loops, j=0 and j=1.   
 

a. A three-way if statement is initiated to check if the[0], the transmitter 
antenna take off angle theta, is within range; if either: 

(1) the absolute value of the[0] is greater than 0.2, 
(2) prop.dl[0], the distance from transmitter to horizon,, is < less 

than 1/10 of  propa.dls[0], smooth earth distance from transmitter 
to horizon, 

(3) prop.dl[0] is > 3.0 * propa.dls[0] 
Then prop.kwx, the error marker, is set to equal the greater of: the existing 
value of prop.kwx; or 3, a value of kwx = 3 indicating that internal 
calculations show parameters out of range.    

 
b. A three-way if statement is initiated to check if the[1], the receiver 

antenna take off angle theta, is within range; if either: 



(1) the absolute value of the[1] is greater than 0.2, 
(2) prop.dl[1], the distance from transmitter to horizon,, is < less 

than 1/10 of  propa.dls[1], the smooth earth distance from 
transmitter to horizon, 

(3) prop.dl[1] is > 3.0 * propa.dls[1] 
 

Then prop.kwx, the error marker, is set to equal the greater of: the existing value 
of prop.kwx; or 3.    

 
Line 693:     for (j=0; j<2; j++) 

if (abs(prop.the[j]) >200e-3 || prop.dl[j]<0.1*propa.dls[j] || 
prop.dl[j]>3.0*propa.dls[j] ) 

    prop.kwx=mymax(prop.kwx,3); 
 

7.    A seven-way if statement is initiated to check the ranges of  ens, gme, zgnd, and 
wn.   If either: 

a. prop.ens, the surface refractivity of the atmosphere, is less than 250.0 or 
greater than 400; 

b. prop.gme, the effective earth’s curvature, is less than 75e−9 or greater than 
250e−9; 

c. prop.zgnd.real, the surface transfer impedance real, (or resistance) 
component is less or equal to the absolute value of prop.zgnd.imag, the 
imaginary (or reactance) component; 

d. prop.wn, the wave number, is less than 0.419 (equal to a frequency of 20 
Mhz) or greater than 420 (equal to a frequency of 20 Mhz); 

Then prop.kwx, the error marker, is set to 4, indicating parameters out of range.    
  

Line 697:  if (prop.ens < 250.0 || prop.ens > 400.0 || prop.gme < 75e-9 || prop.gme > 
250e-9 || prop_zgnd.real() <= abs(prop_zgnd.imag()) || prop.wn < 0.419 || 
prop.wn > 420.0) 

   prop.kwx=4; 
 
8. A for statement is initiated with two loops, j=0 and j=1.   

 
a. An if statement is initiated to check if hg[0], the transmitter antenna height 

above ground level, is within its maximum range; if hg[0] is less than one-
half meter or greater than three kilometers, prop.kwx, the error marker, is 
set to equal 4. 

 
b. An if statement is initiated to check hg[1], the receiver antenna height 

above ground level, as in (a.) above.    
 
Line 700:  for (j=0; j<2; j++) 
  if (prop.hg[j]<0.5 || prop.hg[j]>3000.0) 
   prop.kwx=4; 
 



9.  The value of dmin is set to be equal to five times the absolute value of 
[(prop.he[0] − prop.he[1])], i.e. equal to five times the value of the difference in 
height between the effective height of the transmit antenna and the receive 
antenna. The abs command ignores any negative sign in the result, causing the 
result to always be a positive value.  

  
Line 704:    dmin=abs(prop.he[0]-prop.he[1])/200e-3; 
 
 
From steps 10 through 20, the coefficients for the Diffraction Range are calculated: 
 
 

10. The program calls adiff with inputs (0.0,prop,propa) .   
 

The subroutine adiff returns adiff, the “diffraction attenuation” at the distance d. 
 

 
The value of q is set to be equal to the returned value adiff.  (Note: since the input d = 
0.0, the returned value of  adiff  will be 0.0 for point-to-point mode.  See subroutine 
adiff.   

 
Line 705: q=adiff(0.0,prop,propa); 
 

11.   xae is set to be equal to: (prop.wn*(prop.gme*prop.gme)−1/3       [Alg. 4.2]  
Where:  
 prop.wn is the wave number, equal to the frequency in MHz/47.7. 
 prop.gme is the effective earth’s curvature. 

 
Line 707:  xae=pow(prop.wn*(prop.gme*prop.gme),-THIRD);  
 

12. d3 is set to be equal to the greater of propa.dlsa or (1.3787 * xae + propa.dla): 
[Alg. 4.3] 

where: 
Propa.dlsa is the distance value set at line 680, the total smooth earth 

horizon distance. 
  xae value was set at line 707.  
  Propa.dla is the total horizon distance.  
 
Line 708:  d3=mymax(propa.dlsa,1.3787*xae+propa.dla); 
  

13. d4 is set to be equal to d3 plus 2.7574 times xae    [Alg. 4.4] 
 
Line 709: d4=d3+2.7574*xae; 
   

14. The program calls adiff with inputs (d3,prop,propa) .    [Alg. 4.6] 
 



The subroutine adiff returns adiff, the “diffraction attenuation” at the distance d. 
 a3 is set to be equal to adiff;           

 
Line 710:  a3=adiff(d3,prop,propa);     
  

15.  The program calls adiff with inputs (d4,prop,propa) .    [Alg. 4.6] 
The subroutine adiff returns adiff, the “diffraction attenuation” at the distance d. 
 a4 is set to be equal to adiff 

 
Line 711:  a4=adiff(d4,prop,propa); 
    

16.  propa.emd is set to be equal to: (a4−a3)/( d4−d3)     [Alg. 4.7] 
 
Line 712:  propa.emd=(a4-a3)/(d4-d3); 
  

17.  propa.aed is set to be equal to: (a3 − propa.emd*d3)  [Alg. 4.8] 
 
Line 713: propa.aed=a3-propa.emd*d3; 
        } 
 
 

18. The first if statement has run its course.  A new if statement is initiated, as per 
Section 5 of the ITMD,  stating that if prop.mdp is greater than or equal to zero, 
then:   

 
a. prop.mdp is set to be equal to zero, indicating the area mode has initiated 

and will continue, and; 
b. prop.dist is set to be equal to d, the path distance.  

 
Line 716: if (prop.mdp>=0) 
  { 

 prop.mdp=0; 
  prop.dist=d; 
  } 
   

19. A third if statement is initiated.  It has three embedded if statements that check the 
path distance [see Section 8 of the ITMD]; so if prop.dist, the value of d the path 
distance, is greater than zero, and: 

  
  a. if prop.dist is greater than 1,000 kilometers, then: 

prop.kwx, the error value, is set to be equal to the higher value of 
prop.kwx or 1; 
 

  b. if prop.dist is less than dmin,then;   
   prop.kwx is set to be equal to the higher value of prop.kwx or 3; 
 



  c. if prop.dist is less than 1000 meters,  or  
prop.dist is greater than 2000 kilometers, then: 

   prop.kwx is set to be equal to 4; 
 
Line 722: if (prop.dist>0.0) 
  { 
   if (prop.dist>1000e3) 
    prop.kwx=mymax(prop.kwx,1); 
 
   if (prop.dist<dmin) 
    prop.kwx=mymax(prop.kwx,3); 
 
   if (prop.dist<1e3 || prop.dist>2000e3) 
    prop.kwx=4; 
  } 
 
 

20.  The third if statement, and its three embedded if statements, have run their 
course.  A fourth primary if statement is initiated, stating that if prop.dist is less 
than prop.dlsa, then:  

Line 734:  if (prop.dist<propa.dlsa) 
  { 
 
In steps 21 through 37, the coefficients for the Line-of-Sight Range, including the 
line-of-sight path loss, are calculated: 
 
 

21. The fourth primary if statement is follow by a series of embedded if and else 
statements; the first of these if statements states that: if (wlos) is a boolean false, 
indicating that the line-of-sight coefficients have not yet been calculated, then:  

a. Subroutine alos is called with input (0.0,prop,propa).  The subroutine alos 
returns alosv, the value of the line of sight attenuation, and q is set to be 
equal to alosv. 

 
b. d2 is set to be equal to propa.dlsa, the sum of the two smooth earth 

horizon distances; 
 
c. a2 is set to be equal to the sum of propa.aed and (d2 * propa.emd);  

 
where  

propa.aed    is defined in step 17, above   [Alg 4.8]   
propa.emd     is defined in Step16, above [Alg. 4.7] 

 
d. d0 is set to be equal to: (1.908*prop.wn*prop.he[0]*prop.he[1];          

[Alg. 4.28] 
where 



   prop.wn      is the wave number, = frequency /47.7 MHz*meters 
prop.he[0]  is the effective height of the transmit antenna  
prop.he[1]  is the effective height of the receive antenna 

 
Line 736:  if (!wlos) 
  { 
   q=alos(0.0,prop,propa); 
   d2=propa.dlsa; 
   a2=propa.aed+d2*propa.emd; 
   d0=1.908*prop.wn*prop.he[0]*prop.he[1];   
 

22. The first embedded if statement following the fourth primary if statement, states 
that if propa.aed is greater than, or equal to, zero, then: 

a. d0 is set to be equal to the lesser of:  d0 or  ½ of propa.dla;    [ Alg. 4.28] 
where propa.dla is the sum of the two terminal to horizon distances, and: 

      b. d1 is set to be equal to: d0+0.25*(propa.dla − d0);    [Alg. 4.29] 
    
Line 743:  if (propa.aed>=0.0) 
   { 
    d0=mymin(d0,0.5*propa.dla); 
    d1=d0+0.25*(propa.dla-d0); 
   } 
 

23.  An else statement follows, so if propa.aed is less than zero, then:   
d1 is set to be the greater of:  [-propa.aed/propa.emd] or [0.25*propa.dla]   
[Alg. 4.39] 

  
Line 749: else 
   d1=mymax(-propa.aed/propa.emd,0.25*propa.dla); 
  

24. Subroutine alos is called with input (d1,prop,propa).  [Alg. 4.31]  
 
The subroutine alos  returns alosv, the value of the line of sight attenuation, and a1 is 
set to be equal to alosv. 

 
Line 752:   a1=alos(d1,prop,propa); 
   

25. wq is then set to be equal to Boolean false. 
 
Line 753:  wq=false; 
 

26.  The second embedded if statement following the fourth primary if statement, 
states than if d0 is less than d1, then: 

 



a.  Subroutine alos is called with input (d0,prop,propa).  The subroutine 
alos returns alosv, the value of the line of sight attenuation, and a0 is set to 
be equal to alosv.      [Alg. 4.30] 
 
b. q is set to be equal to: log(d2/d0) 
 
c. propa.ak2 is set to be equal to: 
 
 ((d2-d0)*(a1-a0)-(d1-d0)*(a2-a0))/((d2-d0)*log(d1/d0)-(d1-d0)*q))  
 
or zero, whichever is greater;     [Note: there is an error in Alg. 4.32 here 
that leaves out the log function.  Correct in the code.] 
 
d. if  propa.aed>=0.0 or propa.ak2>0.0 

wq is set to be equal to Boolean true;   
 

Line 755:  if (d0<d1) 
       { 
   a0=alos(d0,prop,propa); 
   q=log(d2/d0); 

propa.ak2=mymax(0.0,((d2-d0)*(a1-a0)-(d1-d0)*(a2-a0))/((d2-
d0)*log(d1/d0)-(d1-d0)*q)); 

   wq=propa.aed>=0.0 || propa.ak2>0.0; 
 

27.  A second if statement is embedded within the if statement on line 736.  If wlos is 
not a Boolean “true”, and if wq is boolean “true”, then:  propa.ak1 is set to be 
equal to: (a2-a0-propa.ak2*q)/(d2-d0).          [Alg. 4.33] 
 

Line 762: if (wq) 
  {  

  propa.ak1=(a2-a0-propa.ak2*q)/(d2-d0); 
 

28. An if statement is embedded within the if statement on line 762.  So: 
a. If wlos is not a Boolean “true”, and; 
b.  if d0 is less than  d1; 
c.  if  wq is boolean “true”, and;  
d.  if propa.ak1 is less than zero; 
e.  then:   (1.) propa.ak1 is set to be equal to zero, and:        [Alg. 4.36] 

(2.) propa.ak2 is set to  be equal to (a2 – a0)/q if a2 is greater than 
a0; if a2 is not greater than a0, the FORTRAN_DIM function 
returns zero, and propa.ak2 is set to  be equal to 0.0/q, i.e. zero. 
[Alg. 4.35] 
  

Line 766:           if  (propa.ak1<0.0) 
    { 
         propa.ak1=0.0; 



        propa.ak2=FORTRAN_DIM(a2,a0)/q; 
 
  

29. An if statement is embedded within the if statement on line 766, So: 
a. if wlos is not a Boolean “true”, and; 
b. if d0 is less than  d1;  
c. if wq is boolean “true”, and  
d. if propa.ak1 is less than zero, and  
e. if propa.ak2 is equal to zero, then: 
f. propa.ak1 is set to be equal to propa.emd.    [Alg. 4.37] 
 

  
Line 771:   if (propa.ak2==0.0) 
     propa.ak1=propa.emd; 
   } 
  } 
 

30.  At this point, the if statements at Lines 771, 766, and 762 have completed their 
run. The if statements at Lines 755 and 736 are still active. 

 
 
 

31. An else statement follows, providing an alternative path to the if statement on line 
755.   Therefore:   

a. if wlos is not a Boolean “true”, and;  
b. if d0 is equal to or greater than  d1, then: 
c.  propa.ak2 is set to be equal to zero, and: 
d. propa.ak1 is set to be equal to (a2-a1)/(d2-d1); 

 
Line 776:  else 
   { 
    propa.ak2=0.0; 
    propa.ak1=(a2-a1)/(d2-d1); 
 

 
32. An if statement is embedded within the else statement on line 766, so: 

a. if wlos is not a Boolean “true”, and;  
b. if d0 is equal to or greater than  d1, and; 
c. if  propa.ak1 is less than or equal to zero,  
d. propa.ak1 is set to be equal to propa.emd. 

 
Line 781:    if (propa.ak1<=0.0) 
         propa.ak1=propa.emd; 
   } 
  } 
   



 
33. The else statement from line 776 ends its run; the if statements on line 755 and 

736 are still active. A new else statement follows on line 786, providing an 
alternative path to the if statement on line 755.   So:  

a. if wlos is not a Boolean “true”, and;  
b. if d0 is equal to or greater than  d1, and; 
c. propa.ak1 is set to be equal to: (a2-a1)/(d2-d1);     [Alg. 4.41] 
d.  propa.ak2 is set to be equal to 0.0;    [Alg. 4.40] 

 
Line 791:    else 
  { 
   propa.ak1=(a2-a1)/(d2-d1); 

   propa.ak2=0.0; 
 
 
34. An if statement is embedded within the else statement on line 786, so: 

a. if wlos is not a Boolean “true”, and;  
b. if d0 is equal to or greater than  d1, and; 
c. if  propa.ak1 is less than or equal to zero,  
d. propa.ak1 is set to be equal to propa.emd. 

 
Line 791:   if (propa.ak1<=0.0) 
    propa.ak1=propa.emd; 
  } 
 
Note:  In the ITM version 7.0 released June 26, 2007, the else and if statements in Steps 
33 and 34 were removed, and the else statement in Step 33 becomes an if statement.  The 
modification performs the same actions as the old code, in 10 fewer lines; 
 
Alternate to Steps 31 to 34;   
 

The else statement from line 776 ends its run; the if statements on line 755 and 736 
are still active. A new if !wq statement follows, leading to a FORTRAN_DIM call;  
So:  

e. if wlos is not a Boolean “true”, and;  
f. if d0 is equal to or greater than  d1, and; 
g. propa.ak1 is set to be equal to (a2-a1)/(d2-d1) if a2 is greater than a1; if 

a2 is equal to or less than a1,  propa.ak1 is set to be equal to zero.    
        [Alg. 4.41] 

h.  propa.ak2 is set to be equal to 0.0;    [Alg. 4.40] 
 

Alternate code:  if (! wq) 
  { 
   propa.ak1=FORTRAN_DIM(a2,a1)/(d2-d1); 

   propa.ak2=0.0; 
 



 
An if statement is embedded within the if (! wq) statement, so: 

i. if wlos is not a Boolean “true”, and;  
j. if d0 is equal to or greater than  d1, and; 
k. if  propa.ak1 is equal to zero,  
l. propa.ak1 is set to be equal to propa.emd. 

 
Alternate Code: if (propa.ak1= =0.0)  propa.ak1=propa.emd; 
  } 
 

35. The else statement on line 786 has now completed its run.  Here: 
a. propa.ael is set to be equal to a2 – propa.ak1 * d2 – propa.ak2 * log(d2), 

and: 
b. wlos is set to be equal to: Boolean” true”, indicating completion of the 

calculation of the line-of-sight coefficients. 
 
Line 795:    propa.ael=a2-propa.ak1*d2-propa.ak2*log(d2); 
  wlos=true; 
      } 
 
 
The next step calculates the reference attenuation, aref, for the line of sight range. 
 

36. An if statement is initiated.   The if statement on line 736 is still active, so: 
a.  if wlos was not a Boolean “true” when checked by the if statement in Step 

21, and;  
b.  if prop.dist is greater than zero, then: 
c.  prop.aref is set to be equal to:      

propa.ael + propa.ak1 * prop.dist + propa.ak2 * log(prop.dist)  
       [Alg. 4.1] 

 
 

Line  799:   if(prop.dist>0.0) 
 prop.aref=propa.ael+propa.ak1*prop.dist+propa.ak2*log(prop.dist); 

 
37.  The if statement on line 736 ends its run.  We have finished calculating the 

coefficients for the Line of Sight range, and have calculated the value of aref if 
the path is line-of-sight from the transmit to the receive terminals.   
 

Line 802:     } 
 
In Steps 38 to 41, coefficients are calculated for the Troposcatter (scatter) range. 
 

38. The last primary if statement is initiated at line 804.  It has an embedded if 
statement immediately following; so if: 

a.  prop.dist, the path distance, is less than or equal to zero,  or: 



b. prop.dist, is greater than propa.dlsa, the sum of the calculated distances to 
the smooth earth horizons.  This is the point, for a smooth earth condition, 
where diffraction mode takes over from line of sight mode. 

c. and; 
d. if wscat is not Boolean true (i.e. is Boolean false), then: 

(1) subroutine ascat is called with inputs (0.0, prop,propa). 
Subroutine ascat returns ascatv, the value of the “scatter 
attenuation”, and q is reset to be equal to ascatv 

(2) d5 is set to be equal to propa.dla + 200,000 meters. [Alg. 4.52] 
(3) d6 is set to be equal to d5 + 200,000 meters, i.e. = propa.dla + 

400,000 meters.            [Alg. 4.53] 
(4) subroutine ascat is called with inputs (d6, prop,propa). 

Subroutine ascat returns ascatv, the value of the “scatter 
attenuation”, and a6 is reset to be equal to ascatv       [Alg. 4.54]  

(5) subroutine ascat is called with inputs (d5, prop,propa). 
Subroutine ascat returns ascatv, the value of the “scatter 
attenuation”, and a5 is reset to be equal to ascatv       [Alg. 4.55] 

 
Line 804:  if  (prop.dist<=0.0 || prop.dist>=propa.dlsa) 
         { 
   if(!wscat) 
   {  
    q=ascat(0.0,prop,propa); 
    d5=propa.dla+200e3; 
    d6=d5+200e3; 
    a6=ascat(d6,prop,propa); 
    a5=ascat(d5,prop,propa); 
 
  

39.  An if statement, embedded under the if statement at line 806, which is embedded 
under the primary if statement at line 804, is initiated. So if:  

a.  prop.dist, the path distance, is less than or equal to zero,  or: 
b. prop.dist, is greater than propa.dlsa, and:   
c. if wscat is not Boolean true (i.e. is Boolean false),and; 
d. if a5 is less than 1000, then: 

(1) propa.ems is set to be equal to: (a6-a5)/(200000 meters)       
[Alg. 4.57] 

(2) propa.dx, the distance where diffraction mode gives way to 
scatter mode, is set to be equal to the greater of: [propa.dlsa] or  
[the greater of  (propa.dla + 0.3 * xae * log(47.7 * prop.wn),  or   
((a5-propa.aed-propa.ems*d5)/(propa.emd-propa.ems))];   
[Alg. 4.58] 

(3) propa.aes is set to be equal to: 
(propa.emd -propa.ems) * propa.dx + propa.aed .          

[Alg. 4.59] 
 



 
Line 814: if (a5<1000.0) 
  { 
   propa.ems=(a6-a5)/200e3; 

propa.dx=mymax(propa.dlsa,mymax(propa.dla+0.3*xae*log(47.7*
prop.wn),(a5-propa.aed-propa.ems*d5)/(propa.emd-propa.ems))); 

   propa.aes=(propa.emd-propa.ems)*propa.dx+propa.aed; 
  } 
 

40.  An else statement provides an alternate path to the if statement immediately 
above.  So if: 

a.  prop.dist, the path distance, is less than or equal to zero,  or: 
b. prop.dist, is greater than propa.dlsa, and; 
c. if wscat is not Boolean true (i.e. is Boolean false),and; 
d. if a5 is equal to or greater than 1000, then: 

(1) propa.ems is set to be equal to: propa.emd. 
(2) propa.aes is set to be equal to propa.aed.   
(3) propa.dx  is set to be equal to: 10,000,000.   [Alg. 4.56] 

 
 Line 821:   else 
   { 
    propa.ems=propa.emd; 
    propa.aes=propa.aed; 
    propa.dx=10.e6; 
   } 
 

41.  The value of wscat is then set to be equal to a Boolean “true;” The if statement at 
line 806 then ends its run.  

 
Line 828:   wscat=true;  (Scatter coefficients calculated and ready) 
  } 
 
The coefficients for the Troposcatter (scatter) range have now been calculated.  In 
steps 42, 43, and 44, aref, the reference attenuation, will be computed as per [Alg. 
4.1] if the path ends in the scatter (Step 43) or diffraction (Step 42) ranges. 
 

42.  An if statement, embedded within the if statement at line 804, is initiated; so if: 
a.  prop.dist, the path distance, is less than or equal to zero,  or: 
b.  prop.dist, is greater than propa.dlsa, and; 
c. if prop.dist is greater than propa.dx, indicating that we are in the 

troposcatter (scatter) range, then: 
d.  prop.aref is set to be equal to: propa.aes + propa.ems * prop.dist; 

 
Line 831:   if (prop.dist>propa.dx) 
   prop.aref=propa.aes+propa.ems*prop.dist; 
 



43. An else statement provides an alternative path to the if statement directly above, 
which is still embedded within the the if statement in Step 38; so if:  

a. prop.dist, the path distance, is less than or equal to zero,  or: 
b.  prop.dist, is greater than propa.dlsa, indicating we are past the line-of-

sight range for a smooth earth situation, and; 
c. if prop.dist is equal to or less than propa.dx, indicating that we have not 

yet arrived at the distance where diffraction dominance rolls over to 
(tropo)scatter dominance, ( the combination of b. and c. therefore 
indicating that we are in the diffraction dominant area) then: 

d.  prop.aref is set to be equal to: propa.aed + propa.emd * prop.dist; 
 
Line 833:  else 
   prop.aref=propa.aed+propa.emd*prop.dist; 
 } 
 
Here we have a problem; an omission. The else statement in Step 38 only allows the 
else statement on Line 833 to act to switch the mode from line-of-sight to diffraction 
mode for a smooth earth situation, at the point where the path length exceeds the sum 
of the calculated smooth earth horizon distances.  There is no provision to switch line-
of-sight mode to diffraction mode, at the point when an obstruction blocks the horizon 
for the transmitter site.  Therefore, the string mode propagation status printout from 
point_to_point, lies in outputting “Diffraction Mode” after passing the first obstacle, as 
the line-of-site mode actually continues until the path length exceeds the sum of the 
smooth earth horizon distances.  
 
To make this subroutine operate to match the status printout from point_to_point, and 
correctly switch from line of sight mode calculation of aref to diffraction mode 
calculation of aref at the first obstruction, it is only necessary to add the following if 
statements, just after the last bracket for the if statement that starts on line 804:  
 
 if (prop.dist<propa.dx); 
  { 
  if (prop.dist>propa.dla); 
   prop.aref=propa.aed+propa.emd*prop.dist; 
  } 
 

44. The subroutine lrprop then sets prop.aref, the reference attenuation, to be equal to 
the greater of prop.aref or zero, and then returns the value of prop.aref..  

 
Line 837: prop.aref=mymax(prop.aref,0.0); 
} 



Chapter XX: Lrprop2 
 
Longley-Rice Propagation subroutine lrprop2. 
 
Last Modified Sept 21, 2008 – itwom1.0t.cpp. 
 
Note: Used with both point-to-point and area modes.  For point-to-point mode, called at 
end of qlrpfl.  Calls subroutines adiff, alos2, ascat, mymin, and mymax. 
 
From ITMD Sections 4, 5 to 9, 15; 16, and 17 with 18 and 19, and 20 with 21, 22 and 23: 
 
The Longley-Rice propagation program.  This is the basic program; it returns the 
reference attenuation aref.  This is the replacement for the “PaulM” version of lrprop2 
found in the ITM version 7.0, released on June 26, 2007. 
 
Many of the earliest found descriptions of the original equations in this subroutine are in 
ESSA Technical Report ERL 79 – ITS 67, “Prediction of Tropospheric Radio 
Transmission Over Irregular Terrain, A Computer Method – 1968” (ITS67) by A. G. 
Longley and P. L. Rice. 
 
 
A Quick Summary of the (original) Lrprop Attenuation Calculation Function: 
 
Therefore, the calculation of radio path loss starts out in the line of sight range, using 2-
ray multipath calculations, added to diffraction calculations projected from the results of 
diffraction calculations in the diffraction range.  The calculation fades to a diffraction 
calculation beyond the transmitter horizon; past distance dlsa, the sum of the theoretical 
smooth earth horizons, to distance dx, only diffraction mode calculation is used.  Beyond 
the distance dx, troposcatter, or scatter, computations are used to determine the losses.   
 
 
Why was it necessary to write lrprop2 to replace lrprop? 
  
The original version of the ITM is designed to use either a very granular terrain database 
in the point-to-point mode, or no terrain database in the area mode.   For no terrain 
database, or terrain databases that are granular enough to require interpolation of ground 
height between data points in the line-of-sight to early diffraction range, the subroutine 
lrprop does not trust a calculation made at just one point. It also has to show a smooth 
transition from the line of sight range to the diffraction range, where the line of sight ends 
and diffraction over the curve of the earth takes over.  The surface where the signal 
grazes the curve of the earth at the  horizon can be smooth, or it can be slightly “irregular 
terrain”; the calculation is designed to handle either situation.  If the earth is smooth, the 
“terrain irregularity factor” is low, and  the calculations simplify to a smooth earth 
calculation.  As the terrain irregularity increases, the effect of the two-ray interfering 
signal is increasingly muted as the interfering signal is scattered by the terrain. Therefore, 
for the line-of-sight-to-just-past-the-horizon range, lrprop picked out five points along 



the path, d0 through d4, and fits three each of these points to two geometric path loss 
curves of the form y = a + bx + c*ln(x), one for the line-of-sight range, and one for the 
diffraction range.  The reference attenuation is then calculated by solving for a point on 
either the line-of-sight curve or the diffraction curve.   
 
The original  procedure, or “building plans” followed by another , earlier “contractor” is 
described in detail in ITS 67, starting in section 3.1, page 16, describing the line-of-sight 
curve creation:  
 

“These three values of attenuation, Ao, A1 and ALs, computed at the distances do, 
d1, and dLs, respectively, are used to determine the slopes k1 and k2 of a smooth 
curve of Acr versus distance for the range 1< d < dLs.” 

 
This concept is expanded and modified in practice; The procedure used by the original 
subroutine lrprop, which was assembled from the instructions found in several 
subroutines in ITS 67, is described in detail in ITS 67, starting in section 3.1, page 16, 
describing the line-of-sight curve creation:  
in ITS67, Annex 3, Subsection 3-1, we find that:  
 

“ The two-ray optics formulas (3.2) to (3.15) are used to compute values of 
attenuation Aot and A1t at distances do and d1, respectively.” 
 
“In addition to the [Ed.; line-of-sight] two-ray theory estimates Aot and A1t of 
attenuation at the distances do and d1, estimates of diffraction attenuation Aod, A1d, 
and ALs are also computed at do, d1, and dLs.”   

 
“The estimates of attenuation Ao and A1, at the distances do and d1, are then 
computed as weighted averages of the two-ray theory and the diffraction 
estimates.”  [Ed.  this, and the previous paragraph’s actions occurs in calls to 
subroutine alos.] 

 
“For distances less than the smooth-earth horizon distance dLs, the calculated 
reference value Acr is defined by a smooth curve fitted to the three values of 
attenuation below free space, Ao, A1, and ALs, at the distances do, d1, and dLs.” 

 
  For 0 < d < dLs; 
 
  Acr   =  Ao + k1(d - do ) + k2log10(d/do)    dB   (3.19) 
 
 The constants k1 and k2 in (3.19) are evaluated as follows.  First estimates  
 k^

1, k^
2  of the slopes k1 and k2 in (3.19) are computed as:  

 
 

k^
2  =  ((ALs - Ao ) (d1 - do ) – (A1 - Ao ) (dLs - do ))/ 

( (d1 - do )log10(dLs/do) –  (dLs - do )log10(d/do)      dB,  
 



or 0, whichever is larger algebraically,      (3.20) 
 
  k^

1  =  [(ALs - Ao ) - k^
2 log10(dLs/do)]/(dLs - do )  dB/km,  (3.21) 

 
  if k^

1  < 0 set k1  = 0  and 
 

  k2  =  (ALs - Ao )/log10(dLs/do).   (3.22)  
 
If the reference attenuation Acr computed from (3.19) is less than zero at any 
distance 0 < d < dLs,  let Acr = 0 for that distance.” 

 
The abbreviation Acr, for the reference attenuation, is later replaced by aref and the value 
is held by propa.aref.   The formulas are also changed to derive, and later function, using 
natural logarithms, ln, or base e, where in the original version from ITS-67 above, 
common logarithms, a.k.a. base 10 logarithms, or log10, functions are used. Please be 
aware that the use of log, without the 10 subscript, may refer to either ln, the old and 
computer coding convention, or log10, the current common usage and calculator 
convention, and must be considered usage with an indeterminate base until verified, 
despite the statement in TN101 to the effect that all use of log refers to base 10 
logarithms.    
 
Answer: In ITS67, on page 15, there is a paragraph that starts with “The reference 
attenuation”.  It is a overview of the summary of the procedure followed by the program 
code. There is no mention of the word “obstruction”.   The concept used to design the 
original code was to present calculations that could account for “irregular terrain” at the 
horizon, as compared to a “smooth earth” scenario.  No provision was made in the 
computations to account for the effect of interrupting the radio path with a significant, 
major obstruction.    
 
No subroutine LRPROP exists in the FORTRAN code found in Annex 3-5 to ITS67. 
The original code that implements these procedures is found in unfamiliar, obsolete 
subroutines such as DIFF, SCATT, and LOS.  When the functions of these subroutines 
were combined into LRPROP, however, it appears that they were combined hurriedly, 
without proper review, and without an understanding of the fact that the concept of 
Irregular Terrain had changed from “a little Irregular Terrain found at the horizon” to 
mean “all kinds of Irregular Terrain, including Obstructions.”   As a result, while the 
subroutines (some of which are imperfect early versions) necessary to support obstruction 
calculations are in place, no provision was made in lrprop to accommodate the changes 
required in the computational procedure that must occur when the line-of-sight and 
diffraction ranges no longer gently merge, but are, instead, abruptly separated by a major 
obstruction.  Therefore, subroutine lrprop was never completed, despite the fact that a 
slightly upgraded version, as part of ITM version 7.0, was released to the public as late 
as June 26, 2007.  
  
This book is not the first time these problems have been noted, but the previous reference 
does not exhibit a realization of the true reason for the problem, nor does it offer a 



solution.  In the book “Fixed Broadband Wireless System Design”, by Harry R. 
Anderson, Ph.D., P.E.,  ©2003 John Wiley & Sons, Ltd., in the chapter on Physical 
Models, subsection 3.5.3, “Longley-Rice model”, Dr. Anderson, the President and CEO 
of EDX Wireless, LLC, correctly summarizes the path loss slope line methodology 
utilized in this subroutine, and notes that:  
 

“At distances from the transmitter to the horizon, the path loss actually includes a 
weighted portion of the diffraction loss beyond the horizon. Having the path loss 
to a receiver location be affected by terrain obstacles beyond that receiver location 
is clearly noncausal and violates physical reasoning for a single path two-
dimensional model.”      

 
 
The Quick Summary of the new Lrprop2 Attenuation Calculation Function: 
 
The calculation of radio path loss starts out in the line of sight range, using 2-ray 
multipath attenuation calculations, the results of which are added to average ground 
clutter attenuation calculations to predict the line-of-sight attenuation to be added to free 
space dispersion.  At the peak of the highest obstruction visible from the transmitter, if 
any, or distance dlsa, the sum of the theoretical smooth earth horizons, a diffraction-only 
calculation determination takes over.  Beyond the distance dx, troposcatter, or scatter, 
computations are used to determine the losses.   
 
 
Changes from lrprop to lrprop2:  
 
This subroutine lrprop2 is a major rewrite of lrprop, a low level supervisory, or 
“foreman” subroutine.  The specialized attenuation calculations subroutines called by 
lrprop2 are the “skilled worker” subroutines adiff, alos2, (which calls saalos), and ascat.  
While subroutine alos2 is a major rewrite of alos; saalos is an entirely new subroutine. 
 
The subroutine alos2 calculates the additional attenuation for line-of-sight paths that 
comes from two-ray multipath cancellation, the out-of-phase cancellation caused by the 
primary signal reflecting off of the ground and combining with the direct line-of-sight 
signal.  The two-ray effect quickly fades away as increasing terrain irregularity, and two 
passes through the absorbing ground clutter layer, reduce the amount of ground-reflected 
signal arriving at the reception point. Subroutine alos2 then calls saalos to determine the 
attenuation due to ground clutter, summing it with the multipath attenuation and reporting 
the total as the line-of-sight attenuation.  Subroutine adiff calculates the diffraction 
attenuation in the diffraction range.  Subroutine ascat calculates the diffraction 
attenuation in the troposcatter range. 
 
The result-averaging line-of–sight calculation methodology used for area mode or 
widely-spaced terrain databases, is modified to use data points that are before the horizon 
or first obstacle.  For databases with 3 arc-second or less spacing, the calculation 
methodology in the line of sight and diffraction range is simplified to a single calculation 



per point method that is appropriate when one-calculation-per-pixel methodology is used 
in the wrap-around input-output software. 
 
For a line-of-sight calculation, the lrprop2 subroutine, working with the alos subroutine, 
now calculates, in a single pass, a full consideration of the non-contiguous and non-
cumulative wavefront-wavelet primary and multipath (formerly 2-ray) signal 
combination effects, and adds in consideration of average clutter attenuation, using 
Radiative Transfer Theory methodology, in the line of sight range.   The line-of-sight 
range now also rolls over to the diffraction range at the peak of the tallest obstruction 
visible from the transmitter site along the rf path, if any exist; an obstruction being 
defined as a elevation point in the rf path that rises above an imaginary line between the 
transmitter antenna center and the horizon, as identified in subroutine hzns.     
 
 
 A Detailed Overview: 
 
The lrprop2 subroutine calculates up to seven distances, d0 to d6, here starting with d2 to 
d6.  Distance d2 is set to be the distance from the transmitter site to the terrain data point 
representing the top of the highest obstacle visible from the transmitter, the start of an 
obstructed diffraction range.  If no such obstacles exist in the path, d2 is set to equal 
distance dlsa, the sum of the two calculated smooth-earth horizon distances, used as the 
maximum distance considered for a line-of-sight range.   
 
Distance d3 is set to be equal to the minimum of: (1) the maximum range of free space 
calculation, distance dlsa, the sum of the estimated smooth earth horizon distances, or (2) 
1.3787*xae+dla, whichever is greater.  For an obstructed path, dla is the sum of the actual 
horizon distances.  For a line-of-sight path, dla is a calculated theoretical estimate.  
Distance d3 is therefore at or past distance dlsa.  Distance d4 is well inside of the 
diffraction range, between distances dlsa and dx.  Distances d5 and d6 are beyond 
distance dx, in the troposcatter range.  Distance d6 is the farthest from the transmitter. 
The distance dlsa represents the maximum distance where the line-of-sight calculations 
can be used; beyond this point, the diffraction calculations are used until the distance dx 
is reached. 
 
If the radial interval length xi, stored in pfl[1], is greater than 500 meters, it indicates that 
a terrain database with data intervals greater than  3 arc-seconds is in use.  When xi > 500 
meters, subroutine lrprop2 operates with a corrected and updated version of the result-
averaging system originally employed in the legacy ITM 1.2.2 to 7.0 version computer 
implementations.  
 
 
Revised Calculations for a Coarse Terrain Database or No Terrain Database: 
 
If xi > 500, subroutine lrprop2  
 



In the section on setting line-of-sight coefficients, the old lrprop subroutine then set 
distance d2 = distance dlsa, and calculated a2, the diffraction attenuation at distance d2 = 
dlsa, using the diffraction loss formula calculated in the paragraph above.  In lrprop2, 
distance d2 is set to be at the top of the highest obstacle visible from the transmitter, the 
start of an obstructed diffraction range.  If no obstacles exist in the path, d2 is set to equal 
distance dlsa, the sum of the two calculated smooth-earth horizon distances, used as the 
maximum distance considered for a line-of-sight range.   
 
Subroutine lrprop2 then calls subroutine adiff to calculate the diffraction loss, a2, at 
distance d2, and the diffraction loss, d3, at distance d3.  Subroutine adiff performs a 
diffraction calculation based on a combined estimate of Fresnel-Kirchhoff knife-edge 
diffraction theory and Vogler smooth bulge theory, described in section 3.2 of the ITS67.   
Subroutine lrprop2 then calculates a straight-line diffraction loss formula, of the form 
a(#) = aed + emd*(path location distance d(#)). 
 
If d is less than the actual transmitter horizon, dl[0], the distances d0 and d1 are then 
calculated.  Subroutine lrprop2 then calls subroutine alos2 three times, to calculate the 
line of sight attenuation a0, a1, and a2a, at locations d = d0, d1, and d2.  
 
Subroutine alos2 calculates the line-of-sight attenuation, a0, at distance d0, using a two-
ray multipath calculation, and then adds the Radiative Transfer Engine-calculated clutter 
loss obtained from a call to subroutine saalos. The sum of the multipath and clutter 
attenuation, the line-of-sight attenuation to be added to free space dispersion, is stored as 
attenuation a0. On the second call, it does the same at distance d1. On the third run, 
Subroutine lrprop compares the output of alos2 to the existing diffraction-calculated 
value of a2; the lowest value of the two values is stored as the attenuation value for a2.   
Over smooth, bare earth, the diffraction mode may have taken over at distance d2 as the 
path of least attenuation of the signal from the transmitter to the receiver; over cluttered 
ground, the combination of Snell’s law geometry and Radiative Transfer Engine (RTE) 
scatter mode I3 (See Shumate’s Approximations) can extend the line-of-sight mode up to 
.02 radians (1/2 degree) past the point where the grazing angle becomes horizontal. 
 
We now have attenuation values, a0, a1, and a2, calculated for the distances d0, d1, d2, 
from near the transmitter site (d0) to the maximum distance for line-of-sight calculations, 
dlsa (d2).  These values are used to generate a new, master line-of-sight attenuation 
formula, a log-geometric curve formula of the form:     
 

Acr   = a0 + k1(d – d0 ) + k2log10(d/d0)    [ITS-67 3.19] 
 
The above curve equation is used in ITS-67; in the ITM 1.2.2, the curve equation is 
modified, and the logarithm function changes its base.  The documentation is consistent 
about this; the ITMDLL.cpp source code, the Algorithm, and the FORTRAN source code 
in the Guide agree that the logarithmic function changes from a common logarithm, or 
log10 function, in the ITS-67 source code, to a natural logarithm, or ln function (“ALOG” 
in the FORTRAN and “log” in the c++ code) in the curve equation used in the ITM 1.2.2. 
to 7.0.  This new curve equation is: 



 
  Aref   = a2 - k1*d2 - k2*ln(d2) +  + k1*d + k2*ln(d/dLs), 
 
Which is split into:  

Aref   =  Ael  + k1*d + k2*ln(d/dLs)    [Alg. 4.1a] 
where:  

Ael   =  a2 - k1*d2 - k2*ln(d2)    [Alg. 4.42 with the omission corrected]   
 
Where Aref is the line-of-sight attenuation to be summed with free space loss attenuation 
to obtain the full attenuation value in the line of sight range from the transmitter out to 
distance dlsa (the sum of the estimated smooth earth horizon distances), or the horizon, or 
the tallest obstruction visible from the transmitter site, whichever comes first.  This value, 
which will be reported out as the reference attenuation if prop.dist, the distance to the 
receive terminal, is more than zero and less than or equal to dl[0], is then stored in 
prop.aref. 
 
To cut through the massive mathematical obfuscation, for any ∆h greater than 4 meters 
(90 meters is average), the 2-ray calculation attenuation fades quickly out of the picture.  
For most cases, from mildly irregular terrain through average terrain and on to very rough 
terrain, and for paths covered with ground clutter, most of the line-of-sight attenuation to 
be added to free space attenuation is now based on Radiative Transfer Engine theory, in 
the form of Shumate’s Approximations. 
 
The surface where the signal grazes the curve of the earth at the horizon can be smooth, 
or it can be slightly “irregular terrain”; the calculation is designed to handle either 
situation.  If the earth is smooth, the “terrain irregularity factor” is low, and the 
calculations simplify to a smooth earth calculation.  As the terrain irregularity increases, 
the effect of the two-ray interfering signal is increasingly muted as the interfering signal 
is scattered by the terrain.  
 
For the diffraction range for area mode or terrain databases with more than 3-arc second 
spacing, lrprop2 calls subroutine adiff to calculate the diffraction loss at an additional 
points along the path, d4, and fits attenuation values a2, a3 and a4 to a geometric path 
loss curve of the form y = a + bx + c*ln(x), for the diffraction range.  If the path distance 
is equal to or greater than dl[0], and less than dx, the reference attenuation is then 
calculated by solving for a point on this diffraction curve.   
 
 
New Calculations for a Terrain Database with 3-arc second or smaller pixel size. 
 
If the radial interval length xi, stored in pfl[1], is equal to or less than 500 meters, it 
indicates that a terrain database with a maximum of 3 arc-second terrain data intervals is 
in use.   When xi < 500 meters, subroutine lrprop2 assumes that the wrap-around 
software is operating in a one-calculation per terrain data point mode, i.e. a point-to-all-
points mode, eliminating the need for interpolation of height between terrain data points.  
Subroutine lrprop2 changes its methodology accordingly, abandoning the line-of-sight 



and diffraction range averaging, and uses a one-calculation per terrain data point 
methodology in the line-of-sight and diffraction ranges to speed calculation and improve 
the accuracy of the prediction at each specified terrain data point.   
 
Therefore, if xi < 500, and if d < d2, the minimum of: (1) distance dlsa, or (2) the distance 
to the top of the highest obstacle visible from the transmitter, then lrprop calls alos2 
once, to calculate the line of sight attenuation at the terrain database point represented by 
distance d.  Subroutine alos calculates the multipath cancellation, and calls subroutine 
saalos to determine the attenuation due to ground clutter, summing the two values and 
reporting out the “attenuation from line-of-sight value” alosv. The array value prop.aref 
is set to be equal to alosv.  
 
If xi < 500, and if the path distance d > distance d2, but less than dx, lrprop calls 
subroutine adiff once, to calculate the diffraction at the terrain database point represented 
by distance d, and the array value prop.aref is set to be equal to adiffv.  
 
Aref , or prop.aref, is the line-of-sight attenuation to be summed with free space loss 
attenuation to obtain the full attenuation value in the line of sight range.  
 
To cut through the mathematical obfuscation, for any ∆h greater than 4 meters (90 meters 
is average), the 2-ray calculation attenuation fades quickly out of the picture.  For most 
cases, from mildly irregular terrain through average terrain and on to very rough terrain, 
most of the line-of-sight attenuation to be added to free space attenuation is now based on 
the Radiative Transfer Engine calculations from Shumate’s Approximations, a 
deterministic and deterministic-based set of approximation equations derived from a 
study of ITU Recommendation ITU-R P.1546-2 line-of sight empirical data curves, 
developed for use in the ITWOM Longley-Rice computer implementation.   
 
Beyond the first obstruction or the horizon, up to distance dx, diffraction mode takes 
over, and the diffraction attenuation is determined using a single call to adiff, which 
performs a two-knife-edge and rounded top diffraction calculation. 
 
 
Beyond distance dx; the tropopscatter mode range. 
 
Beyond distance dx, troposcatter mode determines the attenuation.  The coefficients are 
then calculated for the Troposcatter (scatter) range.  The distances d5 and d6 are 
calculated; d5 = sum of the horizon distances (dla, not dlsa) plus 200 km.  Distance d6 is 
set to be 200 km beyond d5.   Subroutine ascat is called twice to calculate the attenuation 
due to scatter at distances a6 and a5.  The distance dx is calculated.  The slope, ems, for a 
straight-line scatter attenuation formula, of the form a(#) = aes + ems*(path location 
distance d(#)), is derived from the results a5 and a6.  The intercept, aes, is derived from 
the difference in value between the diffraction and scatter slopes, (emd – ems), multiplied 
by the sum of distance dx and the diffraction intercept value aed.  
 



In the final steps, if the path distance, prop.dist, is greater than dx, i.e. in the troposcatter 
range, then the reference attenuation value, prop.aref, to be added to free space 
attenuation in the point_to_point subroutine, is recalculated using the straight-line scatter 
attenuation formula, set to path distance d, stored in prop.dist.  If the path distance is 
between dl[0] and dx, prop.aref is taken from the diffraction range calculation at distance 
prop.dist.  If the path distance is above zero, and less than or equal to dl[0], prop.aref 
remains at the value set by the line-of-sight calculation above.  The value of prop.aref is 
then set to be equal to the greater of prop.aref or zero, and the subroutine ends.   
  
This is what happens in subroutine lrprop2, where the work actually gets done.  The 
mode of operation status information reported out by the point_to_point_two subroutine 
now matches up with what is actually happening in lrprop2, which is now operating on 
the same instruction set built into “point_to_point”, the ITM “middle manager” 
subroutine added prior to April, 1982. 
 
 
Call inputs: 
 
d path distance set to 0.0 to set coefficients.  (prop.dist carries the actual 

active path distance.) 
 
&pfl  array pfl with terrain data coefficients and heights array  
 
&prop  array prop with array elements: 
 
&propa array propa with array elements: 
 
defines private, or local, arguments:  
wlos static boolean argument; true if line-of-sight coefficients have been 

calculated. 
wscat static boolean argument; true if troposcatter coefficients have been 

calculated.  
dmin static double argument; minimum acceptable path distance length in 

meters  
xae static double argument; a calculated distance term, with units in meters, 

based on the cube root of: a rf-signal illuminated square area of the earth’s 
surface, with each side’s length defined as the effective radius of the earth, 
with this area  multiplied by the wave number (i.e. 2π/λ, or the rotational 
frequency) of the signal.  Used to determine distances d3 and d4, at which 
diffraction is calculated, et al; derived from [ITM67 3.24].  

 
prop_zgnd  sub array zgnd (average ground impedance) with elements: 
   prop.zgndreal   resistance element of ground impedance 
   prop.zgndimag  reactive element of ground impedance 
 
a0 line-of-sight attenuation at distance d0 



a1 line-of-sight attenuation at distance d1 
a2 diffraction, or line-of-sight attenuation, whichever is less, at the peak of the 

highest obstruction visible from the transmitter site; or at distance dlsa if no 
obstruction exists in the path. 

a3 diffraction attenuation at distance d3  
a4 diffraction attenuation at distance d4 
a5 troposcatter attenuation at distance d5 
a6 troposcatter attenuation at distance d6 
 
d0 1 of 2 distances at which line-of-sight attenuation is calculated 
d1 2nd of 2 distances at which line-of-sight attenuation is calculated 
d2 distance to peak of the highest obstruction visible from the transmitter site; or at 

distance dlsa if no obstruction exists in the path. 
d3 2nd of 3 distances at which diffraction attenuation is calculated 
d4 3rd of 3 distances at which diffraction attenuation is calculated 
d5 1 of 2 distances at which troposcatter attenuation is calculated 
d6 2nd of 2 distances at which troposcatter attenuation is calculated 
pd1 the active path distance in meters, set to equal prop.dist,  
wq       Boolean argument; indicates whether general case 1 or general case 2 applies in 
calculating line of sight coefficients. 
q working variable; holds  various values during several operations 
j           either 0 (1 in Fortran), for transmit terminal, or 1 (2 in Fortran) for receive 

terminal 
iw terrain interval width in meters, from prop.tiw; calculated in hzns. 
 
This subroutine: 
 

Uses d=0.0, to set up coefficients, and information in arrays prop and propa, in order 
to calculate aref, the reference attenuation (radio signal strength loss) along the path 
between a transmit site and a receive location. 

 
1. iw, the terrain interval width in meters, is set to be equal to prop.tiw; pd1, the 

active path location, is set to equal prop.dist, and dx is preset to 500,000 meters 
until the path distance exceeds dlsa, where the troposcatter coefficients 
computation section resets it to the working value.    The argument dx, held in 
propa.dx, is preset to 2000 km until the path distance exceeds distance dlsa.  

 
Line (new):   iw=prop.tiw; 
  pd1=prop.dist; 
  dx=2000000.0; 
  

2. An if statement is initiated.  If prop.mdp, the mode of the propagation model, is 
not equal to zero, (zero would have indicated that the area prediction mode has 
initiated and is continuing), then the mode of the propagation model is either 1, 
which would initialize the area prediction mode, or –1, which indicates the 



program is running in the point to point mode.  If prop.mdp = 0, the program 
proceeds to the for loop on line 677.  If prop.mdp is not zero, then: 

 
Line  675: if (prop.mdp!=0) 
    

3.  A for statement is initiated with two loops, j=0 and j=1.   
 
a. The first loop sets dls[0], the distance from the transmitter site to the 
smooth earth horizon, to be equal to the square root of 2 times prop.he[0] 
divided by prop.gme. 

 
The algorithm formula comes from: “ESSA Technical Report ERL 79-ITS 67, 
Prediction of Tropospheric Radio Transmission Over Irregular Terrain, A 
Computer Method – 1968” by A.G.Longley and P.L.Rice, where it states on page 
12:   
 
“When individual path profiles are not available, median values of the horizon 
distances dL1, 2  are estimated as functions of the median effective antenna heights 
he1 and he2 determined above, the terrain irregularity factor ∆h, and the smooth-
earth horizon distances DLs1  and DLs2 .  The smooth earth distance from each 
antenna to its horizon over a smooth earth is defined as:  

 
DLs1, 2 = (.002 * a * he1, 2).5   in km.    [ITS67 (5a)] 
  

where the effective antenna heights he1, 2 are in meters and the effective earth’s 
radius a is in kilometers, as defined by (1).” 

   
NOTE: Ms. Longley and Mr. Rice did not intend this formula to be utilized in the point-
to-point mode, where individual path profiles are available.  In the area mode, an 
individual path profile is not available.   In point_to_point mode, it is still used to 
establish a point beyond which the possibility of line-of-sight mode has ceased, and only 
diffraction or troposcatter modes will be allowed. 
 
Converting ITS67 (5a) for meters instead of km, we obtain: 
 
   DLs1, 2 = (2 * a * he1, 2).5   in meters.   
 
 As derived in the chapter on subroutine qlrpfl, in step 11: 
 

a  = 1/ gme. 
 
Where:     a is the earth’s effective radius, in meters, and  

gme is the earth’s effective curvature, in units of 1/meters. gme’s value 
will nominally be calculated to be in the neighborhood of 
0.00000012/meters.  

 



The formula then becomes:  
 

 DLs1, 2 = (2 * he1, 2/gme).5   in meters.               [Alg. 3.5] 
 

And in the computer, he[0] is he1, gme is stored in array prop at prop.gme; and the 
result, DLs1, is stored in array propa at propa.dls[0].    

 
b. Similarly, the second loop sets dls[1], the distance from the receive site 
to the smooth earth horizon, equal to the square root of 2 times prop.he[1] 
divided by prop.gme. 

 
Line 677:   for (j=0; j<2; j++) 
   propa.dls[j]= sqrt(2.0*prop.he[j]/prop.gme); 
 

4. The program then proceeds to:  
  

a. set propa.dlsa, the sum of the smooth-earth horizon distance, equal to the 
sum of propa.dls[0] and propa.dls[1], which were calculated in step 2 
above, based on: 

 
  The sum of the smooth-earth horizon distance is  

 
DLs  =  DLs1  +   DLs2              [ITS67 (5b) or Alg. 3.6] 

  
b. set propa.dla, the  total distance between the antennas and their horizons, 

equal to the sum of propa.dl[0] and propa.dl[1], based on: 
 

The total distance, dL, between the antennas and their horizons is  
 

   dL  =  dL1  +   dL2            [ITS67 (5d) or Alg. 3.7] 
 

The distances dL1 and dL2, the horizon distances, the value of which is stored in 
prop.dl[0] and prop.dl[1], are actual distances to the tallest visible obstruction 
from the transmitter (dl[0]) or receiver (dl[1]), or the estimated actual horizon.  
These distances have been determined as actual distances to obstruction peaks by 
subroutine hzns when it is called by subroutine qlrpfl.  For unobstructed line-of-
sight paths, the horizon distances are estimated in subroutine qlrpfl by shortening 
the estimated smooth-earth horizon distances using an exponential factor based on 
the ratio of the terrain irregularity factor ∆h, and the transmitter effective height. 

  
c.  sets propa.tha to be equal to the greater of either (1) the sum of the theta 

angles stored in prop.the[0] and prop.the[1], or (2) the result of 
multiplying (− propa.dla (calculated in step 3(b)), times prop.gme, the 
effective earth’s curvature).  The effect on the subroutine is that propa.tha 
is set to be equal to the sum of the theta angles, which are generally 
positive (looking above the horizon) for an obstruction or multiple 



obstructions, but for smooth-earth horizons, or small obstructions far 
away, one or both of the theta angles can be negative (looking down); and 
if the sum of the two angles is negative, the negative value is limited to 
propa.dla times prop.gme, the effective curvature of the earth.   The 
argument tha can therefore be positive or negative.   

 
NOTE: An attempted computation of infinity “inf” discontinuity in the adiff subroutine 
computation of a can occur when tha is equal to –d*propa.gme, causing th=0.0, and a = 
ds/th to report “inf” by attempting to divide by zero.  This condition occurs where the 
sum of the theta angles represents a straight line from the transmitter to the receiver that 
just grazes the effective earth curvature. 

 
tha= greater of: ( the1+the1) or (-dla*gme)          [Alg. 3.8] 

 
d.  sets the Boolean value of wlos and wscat to be false, as per instruction in 

ITMD Section 6: 
 
Line 680: propa.dlsa=propa.dls[0]+propa.dls[1]; 
  propa.dla=prop.dl[0]+prop.dl[1]; 
  propa.tha=mymax(prop.the[0]+prop.the[1],-propa.dla*prop.gme); 
  wlos=false; 
  wscat=false; 
 
 
In Steps 4 through 9, the program checks the parameter ranges of the input values, 
as per instructions in ITMD Section 7. 
 

5.   An if statement is initiated to check if the frequency is within range; the wave 
number, prop.wn, which is derived from the frequency in step 2 of subroutine 
qlrps, is checked to see if it is less than .838 (equivalent to a frequency of 40 
MHz) or greater than 210 (equivalent to a frequency of 10 GHz).  If prop.wn is 
outside of the range, prop.kwx, the error marker, is set to equal the greater of: the 
existing value of prop.kwx; or 1.    

 
Line 686:  if (prop.wn<0.838 || prop.wn>210.0) 
   prop.kwx=mymax(prop.kwx,1); 
     

6. A for statement is initiated with two loops, j=0 and j=1.   
 

a.   An if statement is initiated to check if hg[0], the transmitter antenna 
height above ground level, is within range; if hg[0] is less than one meter 
or greater than one kilometer, prop.kwx, the error marker, is set to equal 
the greater of: the existing value of prop.kwx; or 1. A value of kwx = 0 
indicates: no warning; kwx = 1 indicates: caution; parameters are close to 
limits. 

   



b.  An if statement is initiated to check if hg[1], the receiver antenna height 
above ground level, is within range; if hg[1] is less than one meter or 
greater than one kilometer, prop.kwx, the error marker, is set to equal the 
greater of: the existing value of prop.kwx; or 1.    

 
Line 689:   for (j=0; j<2; j++) 
   if (prop.hg[j]<1.0 || prop.hg[j]>1000.0) 
    prop.kwx=mymax(prop.kwx,1); 
 
  

7. A for statement is initiated with two loops, j=0 and j=1.   
 

a.  A three-way if statement is initiated to check if the[0], the transmitter 
antenna take off angle theta, is within range; if either: 

(1) the absolute value of the[0] is greater than 0.2, 
(2) prop.dl[0], the distance from transmitter to horizon,, is < less 

than 1/10 of  propa.dls[0], smooth earth distance from transmitter 
to horizon,  

(3) prop.dl[0] is > 3.0 * propa.dls[0] 
Then prop.kwx, the error marker, is set to equal the greater of: the existing 
value of prop.kwx; or 3, a value of kwx = 3 indicating that internal 
calculations show parameters out of range.    

 
 

b.  A three-way if statement is initiated to check if the[1], the receiver 
antenna take off angle theta, is within range; if either: 

(1) the absolute value of the[1] is greater than 0.2, 
(2) prop.dl[1], the distance from transmitter to horizon,, is < less 

than 1/10 of  propa.dls[1], the smooth earth distance from 
transmitter to horizon,  

(3) prop.dl[1] is > 3.0 * propa.dls[1] 
 

Then prop.kwx, the error marker, is set to equal the greater of: the existing value 
of prop.kwx; or 3.    

 
Line 693:     for (j=0; j<2; j++) 

if (abs(prop.the[j]) >200e-3 || prop.dl[j]<0.1*propa.dls[j] || 
prop.dl[j]>3.0*propa.dls[j] ) 

    prop.kwx=mymax(prop.kwx,3); 
 

8.    A seven-way if statement is initiated to check the ranges of  ens, gme, zgnd, and 
wn.   If either: 

a. prop.ens, the surface refractivity of the atmosphere, is less than 250.0 or 
greater than 400; 

b. prop.gme, the effective earth’s curvature, is less than 75e−9 or greater than 
250e−9; 



c. prop.zgnd.real, the surface transfer impedance real, (or resistance) 
component is less or equal to the absolute value of prop.zgnd.imag, the 
imaginary (or reactance) component; 

d. prop.wn, the wave number, is less than 0.419 (equal to a frequency of 20 
Mhz) or greater than 420 (equal to a frequency of 20 Mhz); 

Then prop.kwx, the error marker, is set to 4, indicating parameters out of range.    
  

Line 697:  if (prop.ens < 250.0 || prop.ens > 400.0 || prop.gme < 75e-9 || prop.gme > 
250e-9 || prop_zgnd.real() <= abs(prop_zgnd.imag()) || prop.wn < 0.419 || 
prop.wn > 420.0) 

   prop.kwx=4; 
 
9. A for statement is initiated with two loops, j=0 and j=1.   

a. An if statement is initiated to check if hg[0], the transmitter antenna height 
above ground level, is within its maximum range; if hg[0] is less than one-
half meter or greater than three kilometers, prop.kwx, the error marker, is 
set to equal 4. 

b. An if statement is initiated to check hg[1], the receiver antenna height 
above ground level, as in (a.) above.    

 
Line 700:  for (j=0; j<2; j++) 
  if (prop.hg[j]<0.5 || prop.hg[j]>3000.0) 
   prop.kwx=4; 
 

10.  The value of dmin is set to be equal to five times the absolute value of 
[(prop.he[0] − prop.he[1])], i.e. equal to five times the value of the difference in 
height between the effective height of the transmit antenna and the receive 
antenna. The abs command ignores any negative sign in the result, causing the 
result to always be a positive value.  

  
Line 704:    dmin=abs(prop.he[0]-prop.he[1])/200e-3; 
 
 
From steps 10 through 20, the coefficients for the Diffraction Range are calculated; 
including a straight line diffraction value formula based on a straight line drawn 
through the diffraction attenuation values a3 and a4: 
 
 

11. The program calls adiff with inputs (0.0,prop,propa) .   
 

The subroutine adiff returns adiff, the “diffraction attenuation” at the distance d. 
 
The value of q is set to be equal to the returned value adiff.  (Note: since the input d = 
0.0, the returned value of  adiff  will be 0.0 for point-to-point mode.  See subroutine 
adiff.   

 



Line 705: q=adiff(0.0,prop,propa); 
 

12.   xae is set to be equal to: (prop.wn*prop.gme*prop.gme)−1/3   This is a distance 
term, with units in meters, based on the cube root of: a rf-signal illuminated 
square area of the earth’s surface, with each side’s length equal to the effective 
radius of the earth  (thereby representing an area defined by a square radian of the 
earth’s surface), with this area multiplied by the wavelength per radian of the rf 
signal (in this case, represented by division by the wave number, (i.e. wn =2π/λ) 
of the signal.  It is used to determine distances d3 and d4, at which diffraction is 
calculated.  From: [Alg. 4.2]; this term is also a partial term derived from equation 
[ITS67 3.24, with conversion from km to meters, and from frequency to wn].  

Where:  
 prop.wn is the wave number, equal to the frequency in MHz/47.7. 
 prop.gme is the effective earth’s curvature, = 1/a. 

  a is the earth’s effective radius 
   
Line 707:  xae=pow(prop.wn*(prop.gme*prop.gme),-THIRD);  
 

13. d3 is set to be equal to the greater of propa.dlsa or (1.3787 * xae + propa.dla): 
[Alg. 4.3], and the rest of [ITS67 3.24], again, converting km to meters, f to wn. 

where: 
propa.dlsa is the distance value set at line 680, the total smooth earth 

horizon distance. 
  xae value was set at line 707.  

propa.dla is the total horizon distance; the sum of the transmit and receive 
horizon distances.  

 
The diffraction attenuation is calculated using three locations; distance d2, distance d3 
and distance d4. Distance d3 is set to be equal to the greater of dlsa or 
1.3787*xae+propa.dla.  For a transmitter effective height of 300 meters, a receive height 
of 10 meters, at an FM broadcast band frequency of 100 MHz, distance dlsa calculates to 
be 37.4 km; xae calculates to be 11km, so if d3 is 37.4 km, d4 is 67.8 km. 
  
Line 708:  d3=mymax(propa.dlsa,1.3787*xae+propa.dla); 
  

14. d4 is set to be equal to d3 plus 2.7574 times xae      [Alg. 4.4], [ITS67 3.24] 
 
Line 709: d4=d3+2.7574*xae; 
   

15. The program calls adiff with inputs (d3,prop,propa) .    [Alg. 4.6] 
 

The subroutine adiff returns adiff, the “diffraction attenuation” at the distance d = 
d3, then a3 is set to be equal to adiff.           

 
Line 710:  a3=adiff(d3,prop,propa);     
  



16.  The program calls adiff with inputs (d4,prop,propa) .    [Alg. 4.6] 
The subroutine adiff returns adiff, the “diffraction attenuation” at the distance d. = 

d4, then a4 is set to be equal to adiff. 
 
Line 711:  a4=adiff(d4,prop,propa);  
    

17.  propa.emd, a.k.a. md, the slope of a straight line formula of form  y = Aed + mdd, 
is set to be equal to: (a4−a3)/( d4−d3)       [Alg. 
4.7], [ITS67. 3.38b] 

 
Line 712:  propa.emd=(a4-a3)/(d4-d3); 
  

18.  propa.aed, the intercept of the straight line formula, y = Aed + mdd is set to be 
equal to the solution to the straight line formula (a3 − propa.emd*d3)   [Alg. 4.8], 
[ITS67. 3.38b] 

 
Line 713: propa.aed=a3-propa.emd*d3; 
        } 
 

19. The first if statement has run its course.  A new if statement is initiated, as per 
Section 5 of the ITMD,  stating that if prop.mdp is greater than or equal to zero, 
then:   

a. prop.mdp is set to be equal to zero, indicating the area mode has initiated 
and will continue, and; 

b. prop.dist is set to be equal to d, the path distance.  
 
Line 716: if (prop.mdp>=0) 
  { 

 prop.mdp=0; 
  prop.dist=d; 
  } 
   

20. A third if statement is initiated.  It has three embedded if statements that check the 
path distance [see Section 8 of the ITMD]; so if prop.dist, the value of d the path 
distance, is greater than zero, and: 

  
  a. if prop.dist is greater than 1,000 kilometers, then: 

prop.kwx, the error value, is set to be equal to the higher value of 
prop.kwx or 1; 
 

  b. if prop.dist is less than dmin,then;   
   prop.kwx is set to be equal to the higher value of prop.kwx or 3; 
 
  c. if prop.dist is less than 1000 meters,  or  

prop.dist is greater than 2000 kilometers, then: 
   prop.kwx is set to be equal to 4; 



 
Line 722: if (prop.dist>0.0) 
  { 
   if (prop.dist>1000e3) 
    prop.kwx=mymax(prop.kwx,1); 
 
   if (prop.dist<dmin) 
    prop.kwx=mymax(prop.kwx,3); 
 
   if (prop.dist<1e3 || prop.dist>2000e3) 
    prop.kwx=4; 
  } 
 

 
21.  The third if statement, and its three embedded if statements, have run their 

course.  A fourth primary if statement is initiated, stating that if prop.dist is less 
than prop.dlsa, then:  

 
Line 734:  if (prop.dist<propa.dlsa) 
  { 
 
Note: This “fourth primary if statement” will control what happens, and which mode of 
calculation is used, from the transmitter site to the distance  dlsa, the value of which is 
stored in  (propa.dlsa),the sum of the two calculated smooth earth horizon distances. 
 
In steps 22 through 38, the coefficients for the Line-of-Sight Range, and the line-of-
sight path loss, are calculated: 
 
For additional description and theoretical background on the calculations below, see 
Section 3-1, page 3-2, of ESSA Technical Report ERL 79-ITS67. 
 

22. The fourth primary if statement is follow by a series of embedded if and else 
statements; the third of these if statements states that: if (wlos) is a boolean false, 
indicating that the line-of-sight coefficients have not yet been calculated, then: 

a. Subroutine alos2 is called with input (0.0,prop,propa).  The subroutine 
alos2 returns alosv, the value of the line of sight attenuation, and q is set to 
be equal to alosv. 

b. d2 is set to be equal to propa.dlsa, the sum of the two smooth earth 
horizon distances; 

c. a2 is set to be equal to a value solved from a diffraction straight line 
formula, aed +d2*propa.emd,  the zero intercept (aed) and slope (emd) 
coefficients of which were derived from the attenuation value a3 at 
distance d3, and attenuation a4, at distances d4, in steps 16 and 17. 

d. Distance d0, the distance closest to the transmitter at which alos2 will be 
called to determine the line-of-sight attenuation, is estimated and preset to: 

 



d0 =1.908*wave number*transmit effective height* receive effective 
height. 
 

For example: for he[0] = 300 m., he[1] = 10 m. , f = 100 MHz, (wn = 2.1),  d0 would be 
preset to  12 km.  
 
Line 736:  if (!wlos) 
  { 
   q=alos2(0.0,prop,propa); 
   d2=propa.dlsa; 
   a2=propa.aed+d2*propa.emd; 
   d0=1.908*prop.wn*prop.he[0]*prop.he[1];   
 

23. We add, in ITWOM, to the “old” methodology, an “if” and “else” statement pair 
to switch the mode from line-of-sight to diffraction mode at the point when an 
obstruction blocks the horizon for the transmitter site, or the estimated actual 
transmitter horizon is reached; at distance dl[0].  This will function up to where 
the path length reaches dlsa, where a later set of commands will allow only 
diffraction mode to be used at distances at or past the distance dlsa. 

   
Line (new)  if(prop.dist>(prop.dl[0])) 
   { 

prop.aref=propa.aed+propa.emd*prop.dist; 
} 
else 
{ 

 
24. The fourth embedded if statement following the fourth primary if statement, states 

that if propa.aed, the slope of the diffraction straight line formula that was 
determined in Step 17 based on two diffraction values, a3 and a4, is greater than, 
or equal to, zero, then: 

a. d0, the distance nearest to the transmitter at which alos will be called to 
determine line-of-sight attenuation, is reset to be equal to the lesser of: d0 , 
as preset in the previous step) or  ½ of propa.dla;    [ Alg. 4.28] 
where propa.dla is the sum of the two terminal to horizon distances, and: 

      b. d1, the second distance at which alos will be called to determine line of 
sight attenuation, is then set to be equal to: d0+0.25*(propa.dla − d0);    
[Alg. 4.29] 

    
Line 743:  if (propa.aed>=0.0) 
   { 
    d0=mymin(d0,0.5*propa.dla); 
    d1=d0+0.25*(propa.dla-d0); 
   } 
 

25.  An else statement follows, so if propa.aed is less than zero, then:   



d1 is set to be the greater of:  [-propa.aed/propa.emd] or [0.25*propa.dla]    
[Alg. 4.39] 

   where:  
propa.aed is the slope of the beyond-horizon straight line 
diffraction value formula solved for diffraction attenuation values 
a3 and a4, (see Step 17). 
propa.emd is the intercept of the straight line diffraction value 
formula, (see Step 16). 
Prop.dla is the sum of the two actual horizon distances.  
  

Line 749: else 
  { 

d1=mymax(-propa.aed/propa.emd,0.25*propa.dla); 
   { 
 

26. Subroutine alos2 is called with input (d1,prop,propa).  [Alg. 4.31]  
 
The subroutine alos2  returns alosv, the value of the line of sight attenuation due to 
(two-ray) multipath cancellation and clutter, and a1 is set to be equal to alosv. 

 
Line 752:   a1=alos2(d1,prop,propa); 
   

27. wq is then set to be equal to Boolean false. 
 
Line 753:  wq=false; 
 

28.  The fifth embedded if statement following the fourth primary if statement, states 
than if d0 is less than d1, then: 

 
a. Subroutine alos2 is called with input (d0,prop,propa).  The subroutine 

alos2 returns alosv, the value of the line of sight attenuation, and a0 is set 
to be equal to alosv.      [Alg. 4.30] 

 
b. Subroutine alos2 is called with input (d2,prop,propa).  The subroutine 

alos2 returns alosv, the value of the line of sight attenuation, and a2, 
which was previously set to the diffraction attenuation at d2 by a call to 
adiff, is reset to be equal to the lesser value of a2 or alosv. Note: This is 
new in lrprop2.     

 
c. q is set to be equal to: ln(d2/d0). 

 
d. A first estimate of slope k2 is calculated; propa.ak2 is set to be equal to: 

 
 ((d2-d0)*(a1-a0)-(d1-d0)*(a2-a0))/((d2-d0)*ln(d1/d0)-(d1-d0)*q))  
 
or zero, whichever is greater;  



 
Note: there are significant confusion and documentation errors here and in several 
of the following steps, regarding the logarithmic functions.  Here:    
 
Re: Calculation of slopes propa.ak1 and propa.ak2 (a.k.a. AK1 and AK2, or K1 and 
K2):  
 
In ESSA Technical Report ERL 79-ITS 67, [1967 with a 1970 errata sheet attached] 
equation 3.20 shows both of the log functions found in step b. and c. above to be 
log10 functions. The errata pages for this report do not note any changes to be made 
to this page.  The computer source code listing on page 3-40 shows the use of the 
FORTRAN ALOG10 function for this equation; the errata pages for this report do 
not note any changes to be made to this line.  Since the argument q, which contains 
one of these log functions, is utilized in step 27 below for the calculation of slope 
propa.ak1 (a.k.a. k1, AK1 or  k1), where ITS 67 equation 3.21 shows the use of a 
log10 function, and in  step 28,  for the recalculation of slope propa.ak2 (a.k.a. k2, 
AK2 or k2), where ITS 67 equation 3.22 shows the use of a log10 function.  This 
confusion also affects these subsequent steps.  The source code on page 3-40, starting 
at 10,  also shows that an ALOG10 function is used for these equations. 
 
However, in “A Guide to the Use of the ITS Irregular Terrain Model in the Area 
Prediction Mode”,[April 1982] Appendix A, pages 78, and 79, subroutine 
LRPROP(D), following “42”, and “44”, shows all of these functions to be ALOG 
functions without the .4343 correction factor applied, therefore indicating a natural 
log, or ln, function.    
 
In the “Irregular Terrain Model” [August 1, 2002 Revision], we find in section 16 
that q, and ak2, are calculated using a log function without a .4343 correction, 
suggesting a natural logarithm, or ln function.  In an earlier, pre August 1, 2002 
version on hand, we find that the log function is missing entirely from the 
denominator of the ak2 equation, between (d2-d0)* and (d1/d0); therefore the 
opportunity to clearly state whether this should be a log10 or ln function was missed 
when this equation was corrected.  This section references the “Algorithm”, 
equation 4.32. 
 
In the ITS Irregular Terrain Model, version 1.2.2. The Algorithm, (date unspecified, 
but bibliography lists a 1985 reference to a Memorandum to users of the ITS 
Irregular Terrain Model); we find:   

a. In equation 4.32, the use of ln, the natural logarithm, is specified for 
calculating K’2, as in steps a and b above. 

b. In equation 4.33 the use of ln, the natural logarithm, is specified for 
calculating K’1  as in step 27 below.   

c. In equation 4.35, we find for the case of K’1 <0,   K”2 = (A2 – A0) 
/ln(d2/d0); the use of ln, the natural logarithm, is specified for 
recalculating K”2 in step 28 below.   

 



In the ITMDLL.cpp source code, we find the use of the log function (ln, or natural 
logarithm) for all of the steps discussed above.   (In c++, the log function is a natural 
logarithm; the log10 function is a logarithm to the base 10).  The specific source 
code lines are: 
 
 q=log(d2/d0); 

 
propa.ak2=mymax(0.0,((d2-d0)*(a1-a0)-(d1-d0)*(a2-a0))/((d2-d0)*log(d1/d0)-
(d1-d0)*q)); 

 
propa.ak1=(a2-a0-propa.ak2*q)/(d2-d0); 

 
     propa.ak2=FORTRAN_DIM(a2,a0)/q; 
 
For now, it appears that the functions to calculate the line formulas have been 
deliberately changed to a natural logarithm function, as all instances appear to have 
been changed.  See the discussion in the section on correcting the Irregular Terrain 
Model. 

And then; 
d. if  propa.aed>=0.0 or propa.ak2>0.0 

wq is set to be equal to Boolean true;   
 

Line 755:  if (d0<d1) 
       { 
   a0=alos2(d0,prop,propa); 
   a2=mymin(a2,alos2(d2,prop,propa)) 
   q=log10(d2/d0); 

propa.ak2=mymax(0.0,((d2-d0)*(a1-a0)-(d1-d0)*(a2-a0))/((d2-
d0)*log10(d1/d0)-(d1-d0)*q)); 

   wq=propa.aed>=0.0 || propa.ak2>0.0; 
 

29.  A second if statement is embedded within the if statement above.  If wlos is not a 
Boolean “true”, and if wq is boolean “true”, then a first estimate of  slope k1 is 
calculated;  propa.ak1 is set to be equal to: (a2-a0-propa.ak2*log(d2/d0))/(d2-
d0),  since  q=log(d2/d0).           [Alg. 4.33], [ITS67 3.21] 
 

Line 762: if (wq) 
  {  

  propa.ak1=(a2-a0-propa.ak2*q)/(d2-d0); 
 

30. An if statement is embedded within the if statement on line 762.  So: 
a. If wlos is not a Boolean “true”, and; 
b.  if d0 is less than  d1; 
c.  if  wq is boolean “true”, and;  
d.  if propa.ak1 is less than zero; 



e.  then:   (1.) propa.ak1 (slope k1) is set to be equal to zero, and:   
       [Alg. 4.36], [ITS67. 3.22] 

(2.) propa.ak2 is set to  be equal to (a2 – a0)/q if a2 is greater than a0; if 
a2 is not greater than a0, the FORTRAN_DIM function returns zero, and 
propa.ak2 is set to  be equal to 0.0/q, i.e. zero. [Alg. 4.35] 

  
Line 766:           if  (propa.ak1<0.0) 
    { 
         propa.ak1=0.0; 
        propa.ak2=FORTRAN_DIM(a2,a0)/q; 
  

31. An if statement is embedded within the above if statement, So: 
a. if wlos is not a Boolean “true”, and; 
b. if d0 is less than  d1;  
c. if wq is boolean “true”, and  
d. if propa.ak1 is less than zero, and  
e. if propa.ak2 is equal to zero, then: 
f. propa.ak1 is set to be equal to propa.emd, the intercept of the diffraction 

straight line formula     .  [Alg. 4.37] 
 

 Line 771:   if (propa.ak2==0.0) 
     propa.ak1=propa.emd; 
   } 
  } 
 } 
 

32.  At this point, the if statements at Lines 771, 766, and 762 have completed their 
run. The if statements at Lines 755 and 736 are still active. 

 
Note:  Here, in the ITM version 7.0 released June 26, 2007, else and if statements 
were removed, and an else statement became an if statement.  The modification 
performs the same actions as the old code, in 10 fewer lines.  These changes are 
incorporated below: 
 
33.  The else statement from line 776 ends its run; the if statements on line 755 and 

736 are still active. A new if !wq statement follows, leading to a 
FORTRAN_DIM call;  So:  

d. if wlos is not a Boolean “true”, indicating the line-of-sight coefficients 
have not yet been calculated, and;  

e. if wq is not a Boolean “true”, indicating that the other case applies, then: 
(1) propa.ak1 is set to be equal to (a2-a1)/(d2-d1) if a2 is greater 

than a1; if a2 is equal to or less than a1, FORTRAN_DIM returns 
a zero value for (a2-a1), and  propa.ak1 is set to be equal to zero.  
       [Alg. 4.41] 

(2) propa.ak2 is set to be equal to 0.0.   [Alg. 4.40] 
 



Line (Alternate code):  if (! wq) 
   { 
    propa.ak1=FORTRAN_DIM(a2,a1)/(d2-d1); 

    propa.ak2=0.0; 
  

34.  An if statement is embedded within the if (! wq) statement, so: 
a. if wlos is not a Boolean “true”, and;  
b. if  propa.ak1 is equal to zero,  
c. propa.ak1 is set to be equal to propa.emd. 

 
Line (Alternate Code): if (propa.ak1= =0.0)   
    { 

propa.ak1=propa.emd; 
} 

   } 
 
 
  

35. The else statement on line 786 has now completed its run.  Here: 
a. propa.ael, the estimated line of sight attenuation, is set to be equal to a2 – 

propa.ak1 * d2 – propa.ak2 * ln(d2),  [ITS67. 11, p.16] 
and: 

b. wlos is set to be equal to: Boolean” true”, indicating completion of the 
calculation of the line-of-sight coefficients. 

 
Re: Use of logarithms in computing propa.ael, the estimated line-of-sight 
attenuation :  
 
A logarithmic function is used in this subroutine for the calculation of propa.ael.   
 
In ESSA Technical Report ERL 79-ITS 67, [1967 with a 1970 errata sheet attached] 
equation 11, on page 16, shows the formula used to calculate the value of propa.ael; 
the logarithmic function shown is a log10 function.  The text notes that it is a 
simplified version of equation 10.   The errata pages for this report do not note any 
changes to be made to this page.  The FORTRAN computer source code listing on 
page 3-34 shows:  AE = AOG – K1*D0-K2*ALOG10(D0), using the base 10 
logarithmic function, ALOG10, for this equation.   The errata pages for this report 
do not note any changes to be made to this line.   
 
However, changes are made to this set of equations between ITS-67 and ITM 1.2.2. 
In “A Guide to the Use of the ITS Irregular Terrain Model in the Area Prediction 
Mode”,[April 1982] Appendix A, page 79, subroutine LRPROP(D), at “46”, shows 
the use of an ALOG function without the .4343 correction factor applied; therefore 
showing a natural log, or ln, function.    
 



In the Irregular Terrain Model, section 16, we find ael calculated with a log function 
without an associated .4343 correction.  This line references the Algorithm, equation 
4.42. 
 
In “The Algorithm”, At equation 4.42 we find:    

Ae l = A2 – K1d2   
 

which appears to be missing the last term; - K2ln(d2), as the source code states:  
    

propa.ael=a2-propa.ak1*d2-propa.ak2*log(d2); 
 
We also find that the full reference attenuation equation, which adds in ael as a 
term, also uses the ln function; we will assume that the correct log function for the 
ITM 1.2.2 variable ael is, therefore, a natural, or base e, ln function, which is coded 
in c++ as a “log” function.  Returning to the main discussion: 
 
 
Line 795:      propa.ael=a2-propa.ak1*d2-propa.ak2*log(d2); 
    wlos=true; 
   } 

} 
 
The next step calculates the reference attenuation, aref, for the line of sight range, if 
the old methodology is being used for a terrain database with intervals of 500 meters 
or more: 
 

 
36. An if statement is initiated.   The if statement on line 736 is still active, so: 

a.  if wlos was not a Boolean “true” when checked by the if statement in Step 
21, and;  

b.  if prop.dist is greater than zero, then: 
c. An additional if statement is initiated.   If in addition to the above, the path 

distance prop.dist is greater than prop.dl[0], the actual distance to the first 
obstacle or estimated actual transmitter horizon distance, then diffraction 
mode applies, and: 

d.  prop.aref is set to be equal to: 
 
    prop.aref=propa.aed+propa.emd*prop.dist; 
   

The same as when prop.dist is between distance dlsa and dx. 
    

e. An else statement follows, so if the path distance prop.dist is less than 
prop.dl[0], then: prop.aref is set to be equal to: 

    
propa.ael + propa.ak1 * prop.dist + propa.ak2 * log(prop.dist)  

        [Alg. 4.1] 



   where:  
   propa.ael is the attenuation for line-of-sight 
   propa.ak1 is the slope k1  
   propa.ak2 is the slope k2  
   propa.dist  is the total radio path distance  
 
Note that this line-of-sight calculation is, at this point, eligible to be applied to all path 
locations that are greater than zero. 
 

 
Re: Use of logarithm is calculating the reference attenuation, prop.aref:  
 
A logarithmic function is used in this subroutine for the calculation of the reference 
attenuation, prop.aref.   
 
In ESSA Technical Report ERL 79-ITS 67, [1967 with a 1970 errata sheet attached] 
equation 10, on page 16, shows the formula used to calculate the value of propa.ael; 
(a.k.a. Acr).  The logarithmic function shown is a log10 function.  The errata pages 
for this report do not note any changes to be made to this page.  The FORTRAN 
computer source code listing on page 3-40 shows at 50:  AG = AO + K1*(D-D0) + 
K2*ALOG10(D/D0), using the base 10 logarithmic function, ALOG10, for this 
equation; three lines later, at 53, we find: ACR=AG.   Again, the errata pages for 
this report do not note any changes to be made to these two lines.   
 
However, change are made to this master curve equation for the line of sight range 
between ITS-67 and ITM 1.2.2, and one of the changes is that both log functions 
change from base 10 common logarithms (log10), to base e natural logarithms (ln);  
 
In “A Guide to the Use of the ITS Irregular Terrain Model in the Area Prediction 
Mode”,[April 1982] Appendix A, page 79, subroutine LRPROP2(D), following “48”, 
shows this function to be an ALOG function without the .4343 correction factor 
applied; therefore showing a natural log, or ln, function.    
 
In the Irregular Terrain Model, section 15, we find aref calculated with a log 
function without an associated .4343 correction.  It states  “if (dist >0.) 
aref = ael +ak1*dist + ak2 log(dist)” and then references the Algorithm, equation 4.1. 
 
In “The Algorithm”, At equation 4.1 we find the use of “ln”: 
 
Thus indicating the use of a natural logarithm function.  And in the ITMDLL.cpp 
we find: 

prop.aref=propa.ael+propa.ak1*prop.dist+propa.ak2*log(prop.dist); 
 
Therefore, since all instances were changed, we will assume that the correct log 
functions here are natural, or base e, ln functions, which are coded in c++ as “log”.   
 



 
Line  799:    if(prop.dist>0.0) 
  { 
        if(prop.dist>(prop.dl[0])) 
       {  

      propa.aref=propa.aed+propa.emd*prop.dist; 
       } 

      else 
       { 

      prop.aref=propa.ael+propa.ak1*prop.dist+propa.ak2*log(prop.dist); 
        } 
 } 

   
37.  Here we find the else statement that provides an alternate path to the if statement 

far above that splits the path between the old ITM method and the ITWOM 
method.  So for this else statement, if: 

a. the path distance is less than distance dlsa; 
b. the interval width, iw, is more than zero and less than 150 meters, then the 

new ITWOM method applies. 
 
Line(new): else 
  { 

 
38. An if statement is initiated; if wlos is not a Boolean true, indicating the line-of-

sight coefficients have not been prepared, then subroutine alos2 is called with 
inputs (0.0,prop,propa) to set up the coefficients for a full run of alos2, and the 
meaningless output alosv is stored in the utility storage argument q. 

 
39. An if statement is initiated; if the integer value of prop.dist-propa.dla, the path 

length, prop.dist, less the sum of the actual horizon distances, dla, is less than 0.0, 
indicating that the horizon distances overlap and therefore indicating a line of 
sight condition exists, then subroutine alos2 is called with inputs 
(pd1,prop,propa).  The argument pd1 is equal to the path distance; the output, 
alosv, the attenuation value for a line of sight path, is stored in prop.aref.  

 
40. An else statement provides an alternative path to the if statement directly above it, 

so if the path length less the sum of the actual horizon distances is equal to or 
greater than zero, one or more obstructions exist in the path, or the path has 
reached the transmitter site horizon. The path terminates at the first obstacle peak 
or horizon, or is beyond the line of sight. 

 
Line(new):  else 
  { 
 

41. An if statement is initiated; if the integer value of prop.dist-propa.dla, the path 
length, prop.dist, less the sum of the actual horizon distances, dla, is equal to 0.0, 



indicating that a single obstacle or mutual horizon condition exists, and if the 
integer value of the receive site horizon distance is equal to zero, indicating that 
the receive site is at the transmitter obstacle peak, or that is at a diffracted mutual 
horizon point, then the line of sight computation subroutine alos2 is called with 
inputs (pd1,prop,propa).  The argument pd1 is equal to the end-of-line-of-sight 
path distance to the peak or transmitter horizon; the output, alosv, the attenuation 
value for a line of sight path, is summed with 5.75 dB, the diffraction loss at a 
peak, and stored in prop.aref.  

 
Line(new): if (int(prop.dist-propa.dla)==0.0)  && (int(prop.dl[1])==0.0) 
  {  
   prop.aref=5.75+alos2(pd1,prop,propa); 
  } 
 

42. The if statement controlling what happens if prop.dist, the path distance is less 
than distance dlsa, ends its run, and an else statement provides an alternative path 
to compute what happens when prop.dist is equal to or greater than distance dlsa. 

 
Line(xxx): } 
                  else 
      {  

   
 

43. Here we again split the path between the old and the new.  We retain an improved 
version of the old path; a completed and corrected version of the old 
methodology, appropriate to use with no database (area mode) or old, granular 
databases (with data points farther apart than 3 arc-second), and also add a new, 
completed methodology for use with precise, point to all terrain point 
computations.   In the last section above, the coefficients for the diffraction range 
and line-of-sight range, and computations for the old and new path computations 
for distances less than dlsa were done.    

 
To split the path, we initiate the below if statement, to make a decision based on 
the distance between terrain data points.  This is set at 130 meters, to 
accommodate the distance between the centers of two adjacent 3-arc-second 
pixels at the equator, located so that only the corners of the pixels touch. 

 
So if xi is zero, indicating no terrain database information, or is 130 meters or 

more, the improved old computer methodology is utilized.     
 
Line (new): if ((iw=0.0) || (iw>130)) 

  { 
 
44. An else statement is initiated, providing an alternate path to the if (iw==0.0 || 

iw=>130) statement in step 22; so if 0<iw<130, where iw=pfl[1], distance per 
increment, (i.e. distance between elevation height data points) in meters, the new 



actual-points line-of-sight and diffraction methodology is followed.  This “new” 
methodology is derived from the original, manual calculation methods in Tech 
Note 101.  This original procedure allowed the terrain height at an obstacle or the 
horizon to be precisely determined and obtained from a hand-drawn radial on a 
paper terrain map.  Failures to extend the Tech Note 101 horizon distance-based 
equations to properly consider obstacles have been corrected.  So if the path 
distance prop.dist is less than dlsa, and if iw is between 0.0 and 130.0 meters, 
then:  

 
Line (new):    else 
  { 

 
45. An if statement is initiated, so if:  

a. the path distance prop.dist is less than dlsa, and: 
b. iw is between 0.0 and 130.0 meters, indicating an ITWOM database, and: 
c. Boolean argument wlos is not true, meaning that the initial setup run of 

alos2 with input 0.0 has not been made, then: 
d.  subroutine alos2 is called with input (0.0,prop,propa) to set up the 

coefficients within alos2.   
e. The boolean argument wlos is set to be equal to true. 

 
Line (new):  if (!wlos) 
    { 
   q=alos2(0.0,prop,propa); 

wlos=true;  
 } 
 

46. An if statement is initiated, so if:  
a. the path distance prop.dist is less than dlsa, and: 
b. iw is between 0.0 and 130.0 meters, indicating an ITWOM database, and: 
c. the integer value of prop.dist, the path distance, subtracted from dla, the 

distance to the peak of the transmitter tallest visible obstacle or horizon 
distance, is less than zero, (i.e. the path distance is less than the distance to 
the obstacle or horizon), indicating a location within the line-of-sight 
range; then: 

d.  subroutine alos2 is called with input (pd1,prop,propa).  The subroutine 
alos2 returns alosv, the value of the line of sight attenuation due to (two-
ray) multipath cancellation and clutter.  The variable prop.aref , 
representing the reference attenuation, is set to be equal to alosv. 

 
Line(new):  if ((int(prop.dist-prop.dla)==0.0  && (int(prop.dl[1]==0.0)) 

  { 
   prop.aref=alos2(pd1,prop,propa); 

 
47.  An else statement provides that if:   

a. the path distance prop.dist is less than dlsa, and: 



b. iw is between 0.0 and 130.0 meters, and: 
c. prop.dist, the path distance, is equal to or greater than dla, the sum of the  

transmitter and receiver horizon distances, indicating a location at or past 
the peak of a first obstacle, and therefore at the end of, or past the line-of-
sight range and in a diffraction range with one obstacle, then: 

 
Line(new): else 
  { 
  

  
48. An if statement is initiated, so if:  

a. the path distance prop.dist is less than dlsa, and: 
b. iw is between 0.0 and 130.0 meters, indicating an ITWOM database, and: 
c. the integer value of prop.dist, the path distance, subtracted from dla, the 

distance to the peak of the transmitter tallest visible obstacle or horizon 
distance, is equal to zero, (i.e. the path distance is equal to the distance to 
the obstacle or horizon), indicating a location at or near the peak of the 
first obstacle or horizon, and the integer value of prop.dl[1], the length of 
the path from the obstacle to the receiver site is equal to zero, indicating 
that the receive antenna is at the peak of the first major obstacle or 
horizon, then: 

d.  subroutine alos2 is called with input (pd1,prop,propa).  The subroutine 
alos2 returns alosv, the value of the line of sight attenuation due to (two-
ray) multipath cancellation and clutter between the transmit site and the 
receive point on the peak of the obstacle. 

e. .  The variable prop.aref, representing the reference attenuation, is set to 
be equal to the value of alosv, plus 5.8 db to account for the knife-edge 
diffraction loss at the peak of the first major obstacle. 

 
Line(new):  if ((int(prop.dist-prop.dla)==0.0  && (int(prop.dl[1]==0.0)) 

  { 
   propa.aref=5.8+alos2(pd1,prop,propa); 

 
In the above step, we have a special condition; the end of a line of sight path terminating 
in a diffraction-affected receive point at a horizon point or the top of an obstacle.  At the 
top of an obstacle, the ∆r = (r1 + r2 – r0) in the computation of v =2(∆r /λ)1/2 for a 
diffraction attenuation computes to be zero, as r1 , equal to prop.dl[0], the transmitter 
horizon distance, is equal to = r0 , the path distance prop.dist or pd1, and r2 , the receive 
horizon distance prop.dl[1], is zero.  Therefore v and v2 compute to be zero; the 
diffraction equation attempts to compute the log10(v) where v=0.0, and defaults to not-a-
number (nan).   There is diffraction attenuation here, coming from the cancellation of the 
incoming signal by reflections off of the leading side of the knife (i.e.the incoming signal 
side of the obstruction).  From Figure 7.1, Tech Note 101, it can be seen that the value of 
attenuation for v=0 is approximately 5.8 dB, and is frequency insensitive as the frequency 
compensation is included in v.   Since we have limited information as to the shape of the 
obstruction in a 3-arc-second database, we conservatively assume a knife-edge equivalent 



at this point, and ignore additional attenuation that may occur due to rounding at this 
location.  The equivalent adjustment for a receive point at the top of a second obstruction 
is incorporated into subroutine alos2, where a receive point at the top of the second 
obstruction is treated as a single obstruction path with 5.8 dB added to account for the 
knife edge diffraction at the knife point.  
 

49. An if statement is initiated.  If:    
a. the path distance prop.dist is less than dlsa, and: 
b. iw is between 0.0 and 130.0 meters, and: 
c. prop.dist, the path distance, is greater than dl[0], the distance from the 

transmitter to the peak of the first major obstacle or horizon, and 
d.  prop.dl[1] is greater than zero, indicating a receive location past the line-

of-sight range,  
e.  then subroutine adiff2 is called twice, once with inputs (0,0,prop,propa) 

to set the coefficients, and a second time with inputs (pd1,prop,propa), to 
compute the diffraction at the path distance pd1.  The argument prop.aref 
is set to be equal to the output adiffv of the subroutine, the attenuation 
from diffraction: 

 
 
Line(new): if  ((int(prop.dist-prop.dl[0])>0.0) && (int(prop.dl[1]>0.0)) 

{ 
   q=adiff2(0.0,prop,propa); 
   prop.aref=adiff2(pd1,prop,propa); 

}  
 
 
 

 
 

50.  An else statement provides an emergency alternative to the above: 
 

else 
{ 
 prop.aref = 1.0; 
} 

} 
} 

} 
 

 The if statement “if (prop.dist<propa.dlsa)” has now run its course.  We have finished 
calculating the coefficients for the Line of Sight range, and have calculated the value of 
aref if the path is line-of-sight from the transmit terminal to the receive terminal, or has 
switched to diffraction mode prior to reaching the distance dlsa. 
  



In the following steps, coefficients are calculated for the Troposcatter (scatter) 
range: 

 
 
51. The last primary if statement is initiated at line 804.     

a. If prop.dist, the path distance, is less than or equal to zero, or: 
b. prop.dist, is greater than propa.dlsa, the sum of the calculated distances to 

the smooth earth horizons.  This is the point, for a smooth earth condition, 
where diffraction mode takes over from line of sight mode. The following 
operations, in steps 38 to 43, therefore apply only at two places on the 
path; the transmitter site location, and then for all points beyond the 
distance dlsa, the sum of the calculated horizon distances over smooth 
earth. 

 
Line 804:  if  (prop.dist==0.0 || prop.dist>=propa.dlsa) 
         { 
 

52. Here we again provide a split path for the old ITM procedure and the new 
ITWOM methodology.  An if statement is initiated; if iw is zero, indicating no 
terrain data, or greater than 130 meters, indicating a terrain database with larger 
than 3-arc-second data intervals, the old ITM system proceeds.  If not, the 
program path jumps to the else statement below and follows the ITWOM 
methodology.   

 
Line (new):  if ((iw==0.0) || (iw>130.0)) 

{ 
 

53.  If the interval width is zero or greater than 130.0 meters, then there is an 
additional embedded if statement immediately following; so: 

 
a. if wscat is not Boolean true (i.e. is Boolean false),indicating that the 

scatter coefficients have not been calculated; then subroutine ascat is 
called with inputs (0.0, prop,propa).  

1) Subroutine ascat returns ascatv, the value of the “scatter 
attenuation”, and the utility value storehouse argument q is reset 
to be equal to ascatv. 

2) d5 is set to be equal to propa.dla + 200,000 meters. [Alg. 4.52] 
3) d6 is set to be equal to d5 + 200,000 meters, i.e. = propa.dla + 

400,000 meters.            [Alg. 4.53] 
4) subroutine ascat is called with inputs (d6, prop,propa). 

Subroutine ascat returns ascatv, the value of the “scatter 
attenuation”, and a6 is reset to be equal to ascatv       [Alg. 4.54]  

5) subroutine ascat is called with inputs (d5, prop,propa). 
Subroutine ascat returns ascatv, the value of the “scatter 
attenuation”, and a5 is reset to be equal to ascatv       [Alg. 4.55] 

 



Line(changed):  if(!wscat) 
   {  
    q=ascat(0.0,prop,propa); 

  d5=propa.dla+200e3; 
    d6=d5+200e3; 
    a6=ascat(d6,prop,propa); 
    a5=ascat(d5,prop,propa); 
 
 

54.  An if statement, embedded under the if statement at line 806, which is embedded 
under the primary if statement at line 804, is initiated. So if:  

a.  prop.dist, the path distance, is less than or equal to zero,  or: 
b. prop.dist, is greater than propa.dlsa, and:   
c. if wscat is not Boolean true (i.e. is Boolean false),and; 
d. if a5 is less than 1000, then: 

(1)  propa.ems is set to be equal to: (a6-a5)/(200000 meters)       
[Alg. 4.57] 

(2) propa.dx, the distance where diffraction mode attenuation is 
equal to scatter mode attenuation, and where diffraction mode 
dominance actually gives way to scatter mode dominance, is set 
to be equal to the greater of: [propa.dlsa] or  [the greater of  
(propa.dla + 0.3 * xae * log(47.7 * prop.wn),[ITS67 3.44b)  or   
((a5-propa.aed-propa.ems*d5)/(propa.emd-propa.ems))];   
[Alg. 4.58] and [ITS67. 3.44a] 

 
 
 
Re: Use of logarithm is calculating the distance dx:  
 
A logarithmic function is used in this subroutine for the calculation of distance dx.  
ITS67 documentation, equation 3.44a, shows this function to be a log10 equation, 
and the source code shows a ALOG10 function on the line performing this function,  
after 30 in subroutine DIFF.   
 
In “A Guide to the Use of the ITS Irregular Terrain Model in the Area Prediction 
Mode”,[April 1982] Appendix A, page 79, subroutine LRPROP(D), following “51”, 
shows this function to be an ALOG function without the .4343 correction factor 
applied; therefore showing a natural log, or ln, function.    
 
In the Irregular Terrain Model, section 21, we find dx calculated with a log function 
without an associated .4343 correction.  This line references the Algorithm, equation 
4.58. 
 
In “The Algorithm”, At equation 4.58 we find the use of “log” with no .4343 
correction factor:  

dx = max[dLs,dL + Xaelog(k*Hs),(A5 –Aed – msd5)/md –ms)] 



 
Thus indicating the use of a natural logarithm function.  And in the ITMDLL.cpp 
we find: 
 

propa.dx=mymax(propa.dlsa,mymax(propa.dla+0.3*xae*log(47.7*prop.w
n),(a5-propa.aed-propa.ems*d5)/(propa.emd-propa.ems))); 

 
Which suggests that this function should be a natural, or ln function,  which c++ 
implements using the log subroutine.   Returning to the main discussion: 
 

(3) propa.aes is set to be equal to: 
(propa.emd -propa.ems) * propa.dx + propa.aed .          

[Alg. 4.59] and [ITS67. 3.44c] 
 
Line 814: if (a5<1000.0) 
  { 
   propa.ems=(a6-a5)/200e3; 

propa.dx=mymax(propa.dlsa,mymax(propa.dla+0.3*xae*log(47.7*
prop.wn),(a5-propa.aed-propa.ems*d5)/(propa.emd-propa.ems))); 

   propa.aes=(propa.emd-propa.ems)*propa.dx+propa.aed; 
  } 
 

55.  An else statement provides an alternate path to the if statement immediately 
above.  So if: 

a.  prop.dist, the path distance, is less than or equal to zero,  or: 
b. prop.dist, is greater than propa.dlsa, and; 
c. if wscat is not Boolean true (i.e. is Boolean false),and; 
d. if a5 is equal to or greater than 1000, then: 

(1) propa.ems is set to be equal to: propa.emd. 
(2) propa.aes is set to be equal to propa.aed.   
(3) propa.dx  is set to be equal to: 10,000,000.   [Alg. 4.56] 

 
 Line 821:   else 
   { 
    propa.ems=propa.emd; 
    propa.aes=propa.aed; 
    propa.dx=10.e6; 
   } 
 

56.  The value of wscat is then set to be equal to a Boolean “true;” The if statement at 
line 806 then ends its run.  

 
Line 828:   wscat=true;  (Scatter coefficients calculated and ready) 
  } 
 
 



The coefficients for the Troposcatter (scatter) range for the ITM method have now 
been calculated.  In the following steps the reference attenuation, will be computed 
as per [Alg. 4.1] for the ITM method, if the path ends in the scatter or diffraction  
ranges. 
 
 

57.  An if statement, embedded within the if statement in Step 38, is initiated; so if: 
a.  prop.dist, the path distance, is less than or equal to zero,  or: 
b.  prop.dist, is greater than propa.dlsa, and; 
c. if prop.dist is greater than propa.dx, indicating that we are in the 

troposcatter (scatter) range, then: 
d.  prop.aref is set to be equal to: propa.aes + propa.ems * prop.dist; 

 
Line 831:   if (prop.dist>propa.dx) 
   { 
   prop.aref=propa.aes+propa.ems*prop.dist; 
   } 
 

58. An else statement provides an alternative path to the if statement directly above, 
which is still embedded within the the if statement in Step 38; so if:  

a. prop.dist, the path distance, is less than or equal to zero,  or: 
b.  prop.dist, is greater than propa.dlsa, indicating we are past the line-of-

sight range for a smooth earth situation, and; 
c. if prop.dist is equal to or less than propa.dx, indicating that we have not 

yet arrived at the distance where diffraction dominance rolls over to 
(tropo)scatter dominance, ( the combination of b. and c. therefore 
indicating that we are in the diffraction dominant area) then: 

d. prop.aref is set to be equal to: propa.aed + propa.emd * prop.dist; 
 
Line xxx:  else 
  {  
   prop.aref=propa.aed+propa.emd*prop.dist; 
  } 
 
In the following steps, coefficients are calculated for the Troposcatter (scatter) range 
for the ITWOM procedure; for a database with intervals 3-arc-second width or 
smaller: 
 

59.  An else statement follows; if the path increment distance is greater than zero and 
less than 130 meters, the ITWOM methodology is followed, and: 

  
60.  An if statement immediately follows; so: 

 
a. if wscat is not Boolean true (i.e. is Boolean false),indicating that the 

scatter coefficients have not been calculated; then subroutine ascat is 
called with inputs (0.0, prop,propa) to prepare coefficients. Subroutine 



ascat returns ascatv, the value of the “scatter attenuation”, and q is reset to 
be equal to ascatv. 

b. The subroutine ascat is called again, this time with inputs (pd1, 
prop,propa). Subroutine ascat returns ascatv, the value of the “scatter 
attenuation”, and a5 is reset to be equal to ascatv. 

 
 Line(changed):  if(!wscat) 
   {  
    q=ascat(0.0,prop,propa); 

   a6=ascat(d5,prop,propa); 
  

61.  Then adiff is called twice: 
a. once with inputs (0.0, prop,propa) to set up coefficients; 
b. and then the second time, this time with inputs (pd1,prop,propa) to 

calculate the diffraction attenuation at path distance pd1. 
c. The subroutine adiff returns adiff, the “diffraction attenuation” at the path 

distance d.     
 
Line 833:    q=adiff(0.0,prop,propa); 

a5=adiff(pd1,prop,propa);  
 

62. An if statement is initiated, embedded within the above if statement.  If the result 
from the diffraction attenuation calculation is less than or equal to the scatter 
attenuation result, then propa.dx is set to 1,000 km. and prop.aref is set equal to 
the result of the diffraction attenuation, a5.  

 
Line(new):  if (a5<=a6) 

{ 
propa.dx=10000000; 
propa.aref=a5; 

{ 
 

63. An else statement provides an alternative path; if the scatter attenuation 
calculation result, a6, is less than the diffraction attenuation, then propa.dx, the 
switchover distance to scatter attenuation, is set to be equal to the distance dlsa, 
and propa.aref is set to be equal to a6:  

 
 

Line(new):   else 
{ 

 prop.dx=propa.dlsa; 
prop.aref=a6; 
} 

 
 
  



 
  
  

64.  The coefficients having been set for the troposcatter range, as well as the 
calculation of attenuation, then wscat is set to be equal to a Boolean true: 

 
Line(new):   wscat=true; 

} 
   } 
  } 
 
 
 

65. The subroutine lrprop2 then sets prop.aref, the reference attenuation, to be equal 
to the greater of prop.aref or zero, and then returns the value of prop.aref.  

 
Line 837: prop.aref=mymax(prop.aref,0.0); 

} 
 
 
 
 



SUBROUTINE POINT_TO_POINT_TWO: A functional explanation, by Sid Shumate.   
 
Last Revised: January 20, 2008. 
 
Longley-Rice Point-to-Point Profile 
 
Note: This is the primary subroutine called by the commercial, freeware, or custom wrap-
around software for point-to-point calculations. In version 7.0 of the ITMDLL.cpp, 
released in June of 2007, there are two alternative subroutines, point_to_pointDH and 
point_to_pointMDH, that provide improvements.   This subroutine initiates the point-to-
point mode calculation of signal loss between two points, or terminals, over a single 
irregular terrain path profile.   The two terminals are the transmit terminal, normally the 
transmitting antenna; and the receive terminal, normally the receiving antenna or 
location.  The subroutine reports out a single value of loss, aref, the “reference 
attenuation” in decibels (dB), of the radio signal between the two terminals. Calls qlrps 
and then lrprop, and then calls avar to calculate additional loss due to statistical variation 
before reporting out errnum, the error code, and dbloss, (a.k.a. aref, the reference 
attenuation) the path loss.   
 
Derived from the Irregular Terrain Model description by George Hufford, 2002, (ITMD), 
and from “A manual for ITM, “Irregular Terrain Model”, a manual for the FORTRAN 
user, found at: http://flattop.its.bldrdoc.gov/itm/itm_man.txt, compared to the ITM.cpp 
prepared by J. D. McDonald and John Magliacane for compilation on unix and linux 
systems.  “Line” numbers refer to the ITM.cpp as line numbered by Bloodshed 
Software’s DevC++ print function.  “Alg” numbers refer to the algorithm formulas in 
“The ITS Irregular Terrain Model, version 1.22, the Algorithm” by G. A. Hufford, 1995.   
“ITS67” numbers refer to the algorithm formulas in “ESSA Technical Report ERL 79-
ITS 67, Prediction of Tropospheric Radio Transmission Over Irregular Terrain, A 
Computer Method – 1968” by A.G.Longley and P.L.Rice.  
 
Other references include: documentation for SPLAT!, an RF Signal Propagation, Loss 
and Terrain analysis tool. 
 
This subroutine incorporates improvements from point_to_pointDH and 
point_to_pointMDH, and changes to support new or modified subroutines saalos, alospo, 
and lrprop2.  
 
From ITMD Sections: 4 and 5. 
 
Call inputs: 
 
The inputs to this subroutine were originally prepared and placed on IBM punch cards for 
input into a 1970’s mainframe computer that used the 1966, and, later, 1977 ANSI 
standard version of the FORTRAN computer language.   Today, for this c++ code, the 
user must provide either a commercially written version (ComStudy, PROBE, RFCAD, 
and TAP being examples), a freeware version (NTIA’s ITMsetup.exe, Radio Mobile, 



SPLAT, or my own SPLAT with PLOP), or write their own wrap-around input and 
output processing software to collect and process the following input data for the 
point_to_point subroutine.  If you wish to “roll your own”, as a learning tool or as a basis 
to build on under the GNU GPL license, the full source code for the wrap around 
software is only freely available for SPLAT and SPLAT with PLOP; both of these are 
Linux command line programs.   
 
This data comes from a combination of direct data input from the program user, from 
standard preset value tables, and from a terrain elevation database [such as GLOBE, the 
USGS National Elevation Database (NED) or the data from the Shuttle Radar Terrain 
Mission (SRTM)].  At this time, only the experimental SPLAT with PLOP provides the 
option of using a combination of two of the databases, one as a ground height database 
(NED) and one as a radio signal reflection height database (SRTM).  
 
elev[ ]   a.k.a. pfl, or array pfl, prepared for use in either version 1.2.2. or version 

7.0 of  the ITM compilied from source code written in c++.  As this array 
is primarily referred to in other parts of the ITM, and in the NTIA  
documentation, as the pfl array, so will we.  This array of elevation values 
is prepared by the calling program or subroutine.  This array contains the 
values of terrain elevation heights (in meters), equally spaced along a path 
starting at the transmit terminal, and ending at the receive terminal, and 
following great circle path, with: 
pfl[0] = enp, the number of increments between elevation data 

points, (also one less that the number of data points) 
pfl[1] =  xi, distance per increment, (i.e. distance between elevation 

height data points) in meters  
pfl[2] =  z(0), the transmitter tower base AMSL, or elevation height 

in meters. 
pfl[[np+2] =  z(np), the receive location AMSL, the last elevation height in meters. 
 
Tht_m a.k.a. hg (0); transmitter antenna center of radiation height in meters, 

above ground level (RCAGL). 
    
Rht_m a.k.a. hg(1); receive antenna center of reception height in meters, above 

ground level (RCAGL). 
 
Note: tht_m and rht_m also referred to in the documentation collectively as HG, heights 
above ground.  
 
Eps_dielect  Earth’s dielectric constant, a.k..a eps; relative permittivity.   

Customary default setting: 15.000  
Typical values:  

   Salt water  80 
Fresh water  80 
Good ground  25 
Farmland, forest 15 



Average ground 15 
Mountain, sand 13 
Marshy land  12 
City     5 
Poor Ground    4 

 
Sgm_conductivity Earth’s conductivity; a.k.a. sgm.  

Customary default setting: 0.005 Siemens per meter  
Typical values:  

   Salt water  5.000 
Good ground  0.020 
Fresh water  0.010 
Marshy land  0.007 
Farmland, forest 0.005 
Average ground 0.005 
Mountain, sand 0.002 
City   0.001 
Poor Ground  0.001 

 
Eno_ns_surfref Atmospheric bending constant, (eno); eno varies with elevation 

above ground; here it is set to equal ens, the refractivity of the 
atmosphere as it approaches the surface of the earth. 

 Customary default: ens = 301.000 N-units (parts per million).  
 
Enc_ncc_clcref (enc) Average clutter canopy refractivity constant.  Customary 

default setting: encc = 1,000 N-units (parts per million) for 
compatibility with ITU-R P.1546-2 data.  Added for ITWOM. 

 
Clutter_height (cch) Average clutter canopy height.  Customary default setting; 

25.3 meters above ground level (for compatibility with ITU-R 
P.1546-2 data). Added as part of ITWOM. 

 
Frq_mhz  Frequency of the transmitter in MHz, Range: 20 to 20000 MHz. 
 
Radio_climate             (klim), the radio climate code; set by the user or obtained from a 

preset list.  Customary Default value is 5.  The climate codes are: 
1. Equatorial; (Africa, along the equator)  
2. Continental Subtropical; (Sudan region) 
3. Subtropical (a.k.a. Maritime Subtropical (West Coast of 

Africa); 
4. Desert (Death Valley, NV; Sahara); 
5. Continental Temperate (usual general U.S. default); 
6. Maritime Temperate Over Land (California to State of 

Washington; West Coast of Europe including U.K.), 
7. Maritime Temperate, Over Sea. 

 



pol polarity of the transmitted signal and receive antenna: 
0 for Horizontal; used primarily for television broadcast and FM home 
reception. 
1 for Vertical: used for FM automotive, cellular, cellular automotive, and 
other 2-way vehicular and handheld radios with vertical whip antennas.   
2 for Circular: (new, in development) use only with a circularly polarized 
receive antenna receiving from a circularly polarized transmitting antenna. 
If the transmitting antenna is not circularly polarized, do not use. If the 
antenna is elliptically polarized, compute by individual polarity and 
combine results based on ratio of polarity.  If the transmitting antenna is 
circularly polarized, and the receive antenna is either horizontal or 
vertical, use the polarity of the receive antenna.  

 
conf confidence; a statistical percentage of confidence in the situation; set as  

.01 to .99 .  In avar, the definition of confidence varies with the value of 
mdvar, the mode of variability; for mdvar = 0, for example, time, location, 
and situation variability are combined together.  For point_to_point mode, 
mdvar = -1.  See step 18 below, or the chapter on subroutine avar, or 
itm.man.   Usual default setting; 0.50 ( 50%) (Note: often used instead of 
location calculation, i.e. to approximate 50% of locations; however, avar  
has separate inputs for confidence and location, and point_to_point calls 
avar to calculate the reference attenuation with the location variable set at 
0.0. See note at input loc below regarding optional subroutine 
point_to_pointMDH.) 

 
rel reliability; a statistical percentage of time availability; set as  .01 to .99  
 Usual default setting; for NTSC (analog) TV, FM broadcast and most FM 

analog transmissions, set to 0.50 ( 50% for FCC 50,50); for Digital FM 
IBOC sidebands, set to .90 or .98, or for  television (DTV), set to 0.97 
(97% for FCC 50, 97).  

 
NOTE: loc, immediately below, is a new option for point-to-point use; see optional 

alternative subroutine point_to_pointMDH released in ITMDLL.cpp 
version 7.0, June 2007:  

 
loc location, a statistical percentage of location availability; set as .01 to .99.  

Internally fixed to zero in point_to_point; as point_to_point calls 
subroutine avar with the location variable set at 0.0.   In the new version 7, 
the optional alternative subroutine point_to_pointMDH allows this to be 
set by the user.  Usual user default setting; 0.50 (50%) for 50% of 
locations. 

  
mode_var (mdvar) mode of variability  (operating mode); Range is 0 to 23;  New to 

enable changes in version 7; see notes below. 
  Preset to 12. 
 



NOTE:  It is interesting to note that for TV or FM broadcast use, in point_to_point mode, 
the mdvar is set to Mobile mode, not Broadcast.  The code for mdvar, the variability 
mode, which sets the mode of operation, is a tens and single digit code.   
 
The tens digit code is:  No tens; default to area mode; combined code is 0 to 3. 
  10 – For the point-to-point mode.  Location variability is eliminated. 

20 – For interference problems.  Direct situation variability is eliminated. 
Note that there may be a small residual situational variability. 

 
The single digits represent: 

0 - Single message mode.  Time, location and situation variability are 
combined together to give a confidence level. 

1 – Accidental mode.  Reliability is given by time availability.  
Confidence is a combination of location and situation variability. 

2 – Mobile mode.  Reliability is a combination of time and location 
variability. Confidence is given by the situation variability. 

3 – Broadcast mode. Reliability is given by the statement of –at least- qT 
of the time in qL of the locations.  Confidence is given by the situation 
variability. 

 
Outputs: 
 
&dbloss dbloss, a.k.a. aref, the reference attenuation, or RF path loss, in dB 
 
strmode output string for use in printed report, indicating mode of operation of the 

calculation by printing out “Line of Sight Mode”, “Single Horizon”, or 
“Double Horizon”, and either “Diffraction Dominant”, or Troposcatter 
Dominant”.   

 
NOTE: New Option for point-to-point use; see optional alternative subroutine 

point_to_pointMDH released in ITMDLL.cpp version 7.0, June 2007, 
which replaces strmode with a single numerical code to eliminate printing 
“Line of Sight Mode”, etc. hundreds or thousands of times on the reports.  

 
&errnum errnum, a.k.a. kwx; the error indicator.  Must be preset by user input to 

zero at beginning of run.  Indicates: 
  0 = no warning 

1 = Warning: Some parameters are nearly out of range. Results should be  
used with caution. 

2 = Note: Default parameters have been substituted for impossible ones. 
This value indicates an effect on computations.  Since errnum (kwx) is 
cumulative, this effect on computations by substitution may or may not be 
true when higher numbers (3, 4, etc.) are reported out.  
3 = Warning: A combination of parameters is out of range. Results are 

probably invalid. 
4 and higher = Warning: Some parameters are out of range.  Results are  



probably invalid.  
 
Note:  Users of the TAP software should check the documentation; TAP uses an 

expanded and modified set of kwx (errnum), definitions. 
 
 
defines private, or local, arguments:  
 
prop_type prop:  array prop with elements: 
 
prop.wn  wave number, = freq. in MHz/47.7 MHz*m; units in 1/meters 
prop.ens  surface refractivity (refractivity of the atmosphere) 
prop.gme  effective earth curvature 
prop.zgnd  surface impedance 
prop.zgndreal  real surface impedance (resistance component) 
prop.zgndimag imaginary surface impedance (reactive component) 
prop.encc  average clutter canopy top refractivity 
prop.cch  average clutter canopy top height AGL 
prop.ptx  polarity of transmitted signal 
 
prop_type propa;  array with elements: 
 
zsys =0 zsys;  preset to zero; later calculated to be the average elevation height 

along a selected portion of the total RF path (between ja and jb).  
zc conf, or confidence level to be calculated, in percent 
zr rel, or reliability level to be calculated, in percent 
eno atmospheric bending constant 
enso atmospheric bending constant  to be preset to zero. 
q utility value-holding variable 
ja a location along the RF path that is 1/10 of the total RF path length 

rounded to the nearest increment, plus three increments, away from the 
transmit terminal. Specified in units of increments. 

jb a location along the RF path that is 1/10 of the total RF path length 
rounded to the nearest increment, plus three increments, away from the 
receive terminal. Specified in units of increments. 

i incremented value in a for loop 
np number of points, the total number of increments between the elevation 

height measurement points from the profile array starting with the transmit 
terminal site and ending with the receive terminal.  

dkm total RF path distance, in kilometers 
xkm distance per path increment, in kilometers per increment 
fs free space path loss, in dB 
 
 
 
 



This subroutine: 
 

1.  Sets prop.hg[0] , the height above ground level of the transmitting antenna 
center of radiation, to be equal to tht_m, and sets prop.hg[1], the height above 
ground level of the receiving antenna center of radiation to be equal to rht_m; 

 
Line 1418:  prop.hg[0]=tht_m;   

prop.hg[1]=rht_m; 
 

2. Sets propv.klim to be equal to the radio_climate value set by the user; the 
customary default being 5, Continental Temperate; 

 
Line 1420:  propv.klim=radio_climate; 
 

3. Sets prop.encc to be equal to the enc_ncc_clcref value set by the user; the 
customary default being 1000.000; 

 
Line 1420:  prop.encc=enc_ncc_clcref; 
 

4. Sets prop.cch to be equal to the clutter_height value set by the user; the 
customary default being 25.3; 

 
Line 1420:  prop.cch=clutter_height; 
 

5. Resets prop.kwx, the error indicator (a.k.a. errnum) to be equal to zero. 
 
Line 1421:  prop.kwx=0; 
  

6.  Presets propv.lvar to be equal to five. 
 
Line 1422:  propv.lvar=5; 
  

7. Sets prop.mdp , the mode of propagation, to be –1, which indicates operation 
in the point-to-point mode; 

 
Line 1423:  prop.mdp=-1; 
  

8.  Sets prop.ptx, the polarity of the transmitted signal, to be 0 (horizontal.), 1 
(vertical), or 2 (circular), going by the user input value pol. 

 
Line 1423:  prop.ptx=pol; 
 
  

9. Sets zc, the confidence level to be calculated by avar, to be equal to 
qerfi(conf), and sets zr, the reliability level to be calculated by avar, to be  
equal to querfi(rel). 



 
Line 1424:  zc = qerfi(conf); 
                   zr = querfi(rel); 
  

10.  Sets np, the number of increments (one less that the total number of elevation 
points in the path), equal to the value of elev[0] ( a.k.a. pfl [0]).   The SPLAT 
version, itm.cpp, defines the argument np to be long(elev[0]) to handle much 
more detailed (more increments per km) RF terrain paths than those originally 
anticipated by the ITMDLL.cpp. 

 
  Line 1426:  np=(long)elev[0]; 
 

11.  Sets dkm to be equal to the number of increments multiplied by the distance 
in meters between elevation points, divided by 1000 meters per kilometer.   
The result is the total RF path distance between the terminals, in kilometers. 

 
Line 1427: dkm=(elev[1]*elev[0])/1000.0; 
  

12.  Sets xkm to be equal to the distance in meters between elevation points, 
divided by 1000 meters per kilometer.  The result is the length of one 
increment, in kilometers. 

 
Line 1428:  xkm=elev[1]/1000.0; 
 

13.  Sets eno, the atmospheric bending constant (relative permittivity) equal to the 
value of eno_ns_surfref; 

 
Line 1429:  eno=eno_ns_surfref; 
    

14.  Sets enc, the average clutter canopy refractivity constant equal to the value of 
enc_ncc_clcref; 

 
Line  (new):  enc=enc_ncc_clcref; 

 
15. Sets cch, the average clutter canopy height above ground level, equal to the 

value of clutter_height. 
 
Line (new) cch=clutter_height;  

 
16.  Presets enso equal to zero. 

 
Line 1430:  enso=0.0; 
 

17. Presets q to be equal to enso, which in step 13, was preset to be equal to zero. 
   
Line 1431:  q=enso; 



 
18. An if statement is initiated; if q is less than or equal to zero, (a given, in that q 

was set to be equal to zero in step 12), then: 
a. ja is set to be equal to three increments, plus one-tenth of the total RF 

path distance in increments.   The SPLAT version, itm.cpp, defines the 
argument ja to be  equal to long(3+.1*elev[0]).  

b.  jb is set to be equal to the total number of increments, plus six,  less 
ja..  This sets jb to be the same distance away from the receive 
terminal, along the rf path, that ja is from the transmit terminal. 

 
Line 1433:  if (q<=0.0) 

  {  
  ja=(long)(3.0+0.1*elev[0]);  /* KD2BD added (long) */ 

   jb=np-ja+6; 
 

19. A for loop is initiated, embedded within the if statement.  The loop operates 
from i = ja-1, until i=jb. As the loop cycles, the value of zsys, which was 
preset to zero when declared, reads and sums up the value of all elevations 
along the RF path from ja to jb. 

 
Line 1438: for (i=ja-1; i<jb; ++i) 
   zsys+=elev[i]; 
  

20.  After the for loop has completed its cycle, then zsys is divided by the value 
of the total number of elevation points starting at ja and ending at jb.   This 
results in zsys being equal to the average elevation height between ja and jb.  

 
Line 1441:     zsys/=(jb-ja+1); 
 
:  

21.  q is reset to be equal to eno, the atmospheric bending constant.. eno varies 
with elevation above ground; here it is set to equal ens, the refractivity of the 
atmosphere as it approaches the surface of the earth, a user selected input with 
a  customary preset value of 301.000 N-units.  The if statement then ends its 
run. 

 
Line 1442:   q=eno; 

 } 
 

22.  propv.mdvar, the mode of variability, is preset to be equal to 12.  This 
consists of a combination of modes 10 and 2.  The value “10” is added for the 
point-to-point mode, which causes location variability to be eliminated.  
[However, this should not be true in version 7, which allows location 
variability to be set].  The value “2” indicates “Mobile” mode, where 
reliability is calculated as a combination of time and location variability.  
Confidence in mode 2 (or 12) is given by the situation variability. 



 
So the setting of mdvar equal to 12, formerly hard-coded into the ITMDLL.cpp, meant 
that the version 7.0 of ITMDLL.cpp is never intended to be used for broadcast unless the 
value of mdvar is changed in the source code and the ITMDLL is re-compiled. 
 
Note: Therefore, for broadcast reception prediction use, the ITMDLL has been 
modified to allow external resetting of the mdvar, using input mode_var = 12 
(preset); this is especially critical in light of the new optional subroutine 
point_to_pointMDP, which allows for setting the percentage value for location. 
 
Line 1445: propv.mdvar=mode_var; 
 

23.  Subroutine qlrps is then called with inputs: 
a. frq_mhz,  the frequency in MHz 
b. zsys,  the average terrain height along path ja to jb 
c. q,   most recently set to be equal to eno, the atmospheric 

bending constant/ atmospheric refractivity 
d. pol,  polarity of the transmitted and received RF signal 
e. eps_dielect, earth’s dielectric constant  
f. sgm_conductivity,   earth’s conductivity 
g. prop;  the array prop. 

 
From these inputs, subroutine qlrps calculates and processes the following 
data and inserts it into the prop_type structure  (prop_type & prop) : 

h. Prop.wn  wave number (=freq. in MHz/47.7 MHz * meters) 
units in 1/meters 

i. prop.ens  surface refractivity 
j. prop.gme  effective earth curvature 
k. prop.zgnd  surface impedance 
l. prop.zgndreal real surface impedance (resistance component) 
m. prop.zgndimag imaginary surface impedance (reactive component) 

 
 Line 1446:  qlrps(frq_mhz,zsys,q,pol,eps_dielect,sgm_conductivity,prop);  
 

24.  Subroutine qlrpfl is then called with inputs: 
a. elev,  array elev (a.k.a. array pfl) 
b. propv.klim, the climate variable 
c. propv.mdvar, the mode of variability (operating mode) 
d. prop,  array prop 
e. propa,  array propa 
f. propv.  array propv 

 
Subroutine qlrpfl calls subroutines hzns, dlthx (which calls zlsq1 and qtile), after 
which qlrpfl may call zlsq1 directly, then ends by calling lrprop. Subroutine 
lrprop then places the value of aref, the value of the reference attenuation, or RF 
path loss, along the RF path, into array location prop.aref; 



 
Line 1447: qlrpfl(elev,propv.klim,propv.mdvar,prop,propa,propv); 
 
 

25. The free space path loss is then calculated by determining the amount of RF 
emitted from a point source, or isotropic antenna, at the center-point of a 
sphere, that would be received by a frequency-tuned antenna embedded in the 
surface of the sphere at a radius r equal to the RF path distance, all in free 
(open and well above the surface) space.  The formula, for units of: 

a. Frequency in MHz, and 
b. Distance in kilometers (prop.dist/1000) is: 
 

Free Space Loss, in dB = 32.45 + 20*log10(Distance) + 20.0*log10(Frequency) 
  
Line 1448:  fs=32.45+20.0*log10(frq_mhz)+20.0*log10(prop.dist/1000.0); 
 
In steps 22 to 28, the subroutine utilizes string mode (strmode) to prepare printouts of the 
operating mode for use in a printed report. 
 

26. Once again we press the utility variable q into service, setting it to be equal to 
prop.dist-propa.dla, subtracting the distance to the transmitter horizon (or 
highest visible obstruction), from the total path distance.  

 
Line 1449:  q=prop.dist-propa.dla; 
 
NOTE: The action of q, here used to determine the point where the printout of 
“Line of Sight Mode” in the report switches to “Single Horizon”, and then to 
“Double Horizon”, only controls the printout, not the actual calculation. The actual 
calculation instruction set is incorporated into, and performed by,  subroutine 
lrprop.  
 

27. An if statement is initiated; if the integer value of q , which was calculated in 
step 22, is negative (less than zero), then the path is line-of-sight, and the 
string prepares to output “Line-Of-Sight Mode” to an output terminal. 

    
Line 1451: if (int(q)<0.0) 
   strcpy(strmode,"Line-Of-Sight Mode"); 
 
  

28. An else statement follows, so if q is greater than or equal to zero:  
 

Line 1453: else 
         { 
 



29. An if statement is embedded within the else statement, so if the integer value 
of q is equal to zero, then: the string prepares to output “Single Horizon” to an 
output terminal. 

 
Line 1455:   if (int(q)==0.0) 
   strcpy(strmode,"Single Horizon"); 
 

30. An else if statement pair is embedded within the else statement in step 24, so 
if the integer value of q is greater than zero, then the string prepares to output 
“Double Horizon” to an output terminal. 

 
Line 1458:  else if (int(q)>0.0) 
   strcpy(strmode,"Double Horizon"); 
 

31. The following if statement is also embedded within the else statement in step 
24, so if:  

a. q is not less than zero, and; 
b. prop.dist is less than or equal to propa.dlsa (i.e., the total path length, 

prop.dist, is shorter than or equal to: the sum of the two smooth earth 
horizon distances) or; 

c. prop.dist is less than or equal to propa.dx, the distance beyond which 
troposcatter mode has dominance, then: 

d. the string prepares to concatenate (append) the phrase “, Diffraction 
Dominant” to the phrase preloaded in steps 25 or 26 above. 

 
Line 1461: if (prop.dist<=propa.dlsa || prop.dist <= propa.dx) 
   strcat(strmode,", Diffraction Dominant"); 
 

32.  An else if statement pair follows; they are also embedded within the else 
statement in step 24, and counteroffer the if statement in step 27.  So if 
prop.dist is greater than propa.dx, the distance beyond which troposcatter 
mode has dominance, then the string prepares to concatenate (append) the 
phrase “, Troposcatter Dominant” to the phrase preloaded in steps 25 or 26 
above. 

 
Line 1464: else if (prop.dist>propa.dx) 
   strcat(strmode, ", Troposcatter Dominant"); 
 } 
 

33.  The subroutine avar is called with inputs:  
a. zr, the time reliability, (50% of the time) as a percentage decimal 

 value between 0.01 and 0 .99, to be calculated. 
b. 0.0, the location percentage (at 00% of locations) to be  

calculated.  (Location percentage is disabled for mdvar= 2 or 12). 
c. zc, the confidence, as a percentage decimal value between 0.01 

 and 0.99, to be calculated. 



d. array prop, 
e. array propv 

 
Subroutine avar returns avarv, a value representing the reference attenuation aref 
adjusted for the additional loss to be included as a result of calculating for 
statistical variation as a percentage of time, location, and confidence as authorized 
by the setting of the mdvar code.  The value of dbloss (a.k.a. aref, the reference 
attenuation in dB) is set to be equal to the value of avarv in dB returned by 
subroutine avar and the value of the free space attenuation. 

 
  Line 1468:   dbloss=avar(zr,0.0,zc,prop,propv)+fs; 
 
 

34.  The value of the output-accessible argument errnum is set to be equal to the 
value of prop.kwx, the error indicator. 

 
 Line 1469  errnum=prop.kwx; 

   } 
 
Subroutine point_to_point ends.  The user-supplied wrap-around input-output program 
continues. For a single terrain profile, the wrap-around input-output program may 
execute subroutine point_to_point hundreds of times to calculate the RF signal loss for 
each terrain point (except the transmitter site) calculated along the terrain path.  For a 
modern point-to-point all-points area mapping of signal loss, the wrap-around input-
output program may run point_to_point thousands, hundreds of thousands, or even 
millions of times to calculate the RF signal loss for each terrain point.  So it is important 
to keep the code “lean and tight” for purposes of speed of execution. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 



SUBROUTINE QLRPFL: A functional explanation, by Sid Shumate.   
 
Last Revised: Sept. 26, 2008 to include receiver approach angle calculation. 
 
Quick Longley-Rice Profile 
 
Note: Used with point-to-point mode only.  Called by point_to_point after calling qlrps. 
Calls hzns, dlthx (which calls zlsq1 and qtile), after which qlrpfl may call zlsq1 directly, 
then ends by calling lrprop.  One may then call avar for quantiles, if desired. 
 
Derived from the Irregular Terrain Model description by George Hufford, 2002, (ITMD), 
compared to the ITM.cpp prepared by J. D. McDonald and John Magliacane for 
compilation on unix and linux systems.  “Line” numbers refer to the ITM.cpp as line 
numbered by Bloodshed Software’s DevC++ print function.  “Alg” numbers refer to the 
algorithm formulas in “The ITS Irregular Terrain Model, version 1.22, the Algorithm” by 
G. A. Hufford, 1995.   “ITS67” numbers refer to the algorithm formulas in “ESSA 
Technical Report ERL 79-ITS 67, Prediction of Tropospheric Radio Transmission Over 
Irregular Terrain, A Computer Method – 1968” by A.G.Longley and P.L.Rice.  
 
Please note that the qlrpfl subroutine, and the dlthx, hzns and zlsq1 subroutines that are 
called during qlrpfl, were intended to be experimental early versions, but are still in use 
today with few modifications or corrections.   George  Hufford, in The ITM Manual 
states:  

 
“It should be noted that the original ITM is silent on many of the details for 
defining some of the path parameters.  This is particularly true of the effective 
heights HE, and, to some lesser degree, of the terrain irregularity parameter DH.  
The effective height, for example is defined as the height above the “effective 
reflecting plane,” and in the past the investigator has been urged to use his own 
best judgement as to where that plane should be placed. The subroutine QLRPFL, 
in trying to automate the definition of all parameters, has been forced to define 
explicitly all missing details. It has done this in a way that seems reasonable and 
in full accord with the intent of the model.   One should not, however, conclude 
that these efforts are completed. Hopefully, better results are obtainable.”       

 
 
From ITMD Section 43: 
 
Call inputs: 
 
pfl terrain elevation profile array, starting at tx, ending at rcvr, following great 

circle path, with: 
  pfl[0] =enp, the number of increments 
  pfl[1] = xi, distance per increment  
  pfl[2] = z(0), the transmitter tower base AMSL, or elevation height 
  pfl[[np+2] = z(np), the receive location AMSL, the last elevation. 



 
klimx  a.k.a. propv.klim, the climate code 
mdvarx a.k.a. propv.mdvar,  the mode of variability; preset to 12.0 in  the 

point_to_point subroutine, and readjusted during qlrpfl;  
 
defines private, or local, arguments:  
np  number of points  
j  terminal, either 0 (1, or transmit site) or 1 (2, or receive site) 
x1[0]  position on terrain path a short distance from transmitter site, in meters.  
x1[1]  position on terrain path a short distance from receive site, in meters. 
q  ∆h(s), delta h adjusted for the path length 
za elevation value in meters of the average terrain height at the transmit site 
zb elevation value in meters of the average terrain height at the receive site  
temp  temporary value holding variable used at line 1326 and line 1327. 
rad  receive approach path start location, in meters from the transmitter site. 
rae1  receive approach elevation at “rad” in meters. 
rae2  receive approach elevation at receiver in meters. 
 
 
This subroutine: 
 

1. Uses pfl [0], number of points, and pfl [1], increment distance, to calculate path 
length prop.dist. 

 
Line 1302: prop.dist=pfl[0] * pfl[1]; 
 

2. Defines np, number of points, to be equal to the value stored in pfl [0]. 
 
Line 1303: np=(int)pfl (0); 
 

3. Calls subroutine hzns, forwarding as input, arrays pfl and prop. 
 

Line 1304: hzns(pfl,prop);      See separate description for subroutine hzns. 
 

4. hzns returns: 
a. prop.the[0] horizon elevation angle as seen from tx antenna center; 

specified as vertical units of increase or decrease per horizontal distance. 
b. prop.the[1] horizon elevation angle as seen from rcvr antenna center; 

specified as vertical units of increase or decrease per horizontal distance. 
c. prop.dl[0] distance from transmitter tower base to horizon 
d. prop.dl[1] distance from receive antenna ground point to horizon 

 
5. A for loop is initiated to determine the values of x1 and x2.   This is a short loop, 

2 cycles, from j=0 to j<2, i.e. for j=0 and j=1.  j refers to the terminals, j=0 
represents the transmitter site terminal, j=1 represents the receive site terminal. 

 



Line 1306: for (j=0; j<2; j++) 
 

6.   The loop performs the following operations: 
 
 

a. On the first pass, sets the value of xl[0] (a.k.a. x1, or x-one,) equal to the 
lesser of (15 times the height of the transmit antenna, or 1/10 of the 
distance from tx tower base to horizon.   

 
Line 1307:  xl[j]=mymin(15.0*prop.hg[j],0.1*prop.dl[j] 
 

b. On the second pass, sets the value of x1[1] (a.k.a. x2) equal to the lesser of 
15 times the height of the receive antenna, or 1/10 of the distance from the 
receive site to the horizon.    

 
7. The value of xl[1] is then set equal to the path distance less the existing value of 

xl[1].   This makes it equal to the distance from the transmitter site to the point 
near the receiver site. 

 
Line 1309:  xl[1]=prop.dist-xl[1] 
 
 

8. The value of prop.dh, the terrain irregularity parameter (a.k.a. delta h) is then 
determined by calling subroutine dlthx(pfl,xl[0],xl[1].  

 
Line 1310:  prop.dh=dlthx(pfl,xl[0],xl[1]); 
 
  Dlthx calls mymin, mymax, assert, zlsql and qtile. 

 
dlthx returns dlthxv, the ∆h (a.k.a. delta h or dh) terrain irregularity parameter, 
which is stored in prop.dh 
 

9. Next, an if statement is initiated; the first task of this if statement is to determine 
if the path is a line-of-sight path, or a trans-horizon path.  If the sum of prop.dl[0} 
and prop.dl[1], the horizon distances from the transmitter to the horizon and the 
receiver to the horizon, is less than 1.5 times the total path distance prop.dist, then 
the path is determined to be a line-of-sight path.   

 
For example, if the transmit to receive path distance is 10,000 meters (10 km), 
then the combined total of the distance to the horizon from the transmit site, and 
of the distance to the horizon from the receive site, must equal or be greater than 
150% of 10 km, or 15,000 meters (15 km), overlapping each other by an average 
of 1/3 of each, for the RF path to be determined to be a line-of-sight path.   
 
As a second example, if there is a single obstacle, then the combination of the 
distance to the horizon (the obstacle) from the transmit site and of the distance to 



the horizon (the obstacle) from the receive site, would approximately equal the 
combination of the distance to the horizon (obstacle) from the transmit site and of 
the distance to the horizon (obstacle) from the receive site, and would therefore 
not meet or exceed the 150% of total path length overlap requirement necessary to 
determined to be a line-of-sight path.  The default determination made would be 
that the RF path is a trans-horizon path, and the computer program would jump to 
the else statement on Line 1343. 
 

Line 1312:  if (prop.dl[0] +prop.dl[1]>1.5*prop.dist) 
 
 

10. If the path is a line-of-sight path, the if statement then continues: 
a. subroutine zlsql is called with inputs (pfl, x1[0],xl[1]), in order to 

calculate an average terrain line between points x1[0] and xl[1], and determine the 
average elevation height on that line at the location of x1[0] and x1[1] ; 

  b. zlsq1 then returns:  
za = z0, the elevation value of the average terrain line at the 
transmitter site. 
zb = z1, the elevation value of the average terrain line at the 
receive site. 

c. The effective height of the transmit site, he(0), is set to be equal to 
prop.hg(0) + pfl(2) – za, but only if pfl(2) > za.  If  pfl(2) is not > za, then 
he(0) is set to be equal to prop.hg(0).  
 
Therefore prop.he(0), the effective height of the transmit site, is set to be 
equal to prop.hg(0); and if the existing ground height of the transmit site, 
pfl(2), is above the average elevation height at the transmit site, za, 
(established by zlsq1), then the difference in height between the average 
transmit site elevation height and the ground height is also added to 
prop.he(0). 
 
d. the effective height of the receive site, prop.he(1), is set to be equal to 
prop.hg(1) + pfl(np+2) – zb, but only if pfl(np+2) > zb.  If  pfl(np+2) is 
not > zb, then prop.he(1) is set to be equal to prop.hg(1). 
 
Therefore prop.he(1) is set to be equal to prop.hg(1), and if the existing 
ground height of the receive site, pfl(np+2), is above the average elevation 
height at the receive site, zb, the difference in height between the average 
receive site elevation height and the ground height is also added to 
prop.he(1). 
 

 
NOTE:   In October of 2004, Hammett & Edison, a well respected and highly regarded 
communications engineering consulting firm in San Francisco, CA, submitted comments 
to the Federal Communications Commission (FCC) in CS Docket 98-201, regarding the 



use of Longley-Rice in calculating Grade B TV Signal Coverage.  They stated in 
paragraph 20: 
 
 “This ongoing work has convinced us that the implementation of the L-R model is even 
more flawed than had been originally suspected.  For example is has come to light that 
the OET-69 software calculates the depression angle to a calculation point using the 
sources height above ground, not its height above sea level.   This coding mistake by 
itself will introduce errors of perhaps 10-20 dB in the calculation results.”   
 
Therefore, the calculation of the elevation height value in prop.hg(0)  at the transmit 
site and the elevation height value in prop.hg(0), at the receive site, must be 
reviewed to determine if prop.hg(0) and prop.hg(1) are derived from the height 
above ground level, or are derived correctly from height above sea level.  If from 
ground level, it is eligible for correction;  One solution would be to add pfl(2), the 
ground height, to he(0) on line 1315, and add pfl(np+2) to he(1) on line 1316.  This 
however, would make it more difficult to insert separate receive site elevations from 
a second, ground height database, in the input to the point_to_point subroutine call.  
The better solution would be to replace the input value of prop.hg(0) supplied in the 
point_to_point subroutine call, with the radiation center height above mean sea level 
(RCAMSL), in meters, of the transmit site antenna, and to replace the value of 
prop.hg(1) with the reception center height above mean sea level of the receive 
antenna.   However, all other subroutines must be checked for necessary 
adjustments and corrections if they take input, directly or indirectly, from 
prop.hg(0) or prop hg(1).   
 
First, however, we continue to describe the function of the software in its current form:   
 
Line 1314:  zlsq1(zpfl,x1[0],x1[1],za,zb); 
Line 1315: prop.he[0]=prop.hg[0]+FORTRAN_DIM(pfl[2],za); 
Line 1316:   prop.he[1]=prop.hg[1]+FORTRAN_DIM(pfl[np+2],zb); 
 

11.  A for loop, with two loops (j=0 and j=1), within the above for loop (started in 
Step 5.) is initiated here, to determine or re-determine the values of prop.dl[0], the 
distance from the transmitter site to the horizon, and prop dl[1], the distance from 
the receive site to the horizon, for a line of sight analysis.    

 
NOTE:  The Environmental Science Services Administration (ESSA) Technical 
Report ERL 79-ITS 67, “Prediction of Tropospheric Radio Transmission Loss Over 
Irregular Terrain, A Computer Method – 1968” by A.G. Longley and P. L. Rice, 
states on page 12, starting with paragraph 2:  
 

“When individual path profiles are not available, median values of the horizon 
distances dL1, 2  are estimated as functions of the median effective antenna heights 
he1 and he2 determined above, the terrain irregularity factor ∆h, and the smooth-
earth horizon distances DLs1  and DLs2 .  The smooth earth distance from each 
antenna to its horizon over a smooth earth is defined as:  



 
DLs1, 2 = (.002 * a * he1, 2).5   in km.   ITS67 (5a) 

  

where the effective antenna heights he1, 2 are in meters and the effective earth’s 
radius a is in kilometers, as defined by (1).   The sum of the smooth-earth horizon 
distance is  

DLs  =  DLs1  +   DLs2 ,  in km.      ITS67 (5b) 
 
 Median values of horizon distances over irregular terrain are estimated as  
 

 DL1, 2 = DLs1, 2   exp(– .07 (∆h/he) .5   in km,  ITS67 (5c) 
 where 
   he  =  he1, 2  for  he1, 2   > 5 meters,  or   5 meters otherwise. 
 
 The total distance, dL, between the antennas and their horizons is  
 

   dL  =  dL1  +   dL2 ,  in km”.   ITS67 (5d) 
    
To use these formulas in this subroutine, we convert from km to meters: 

 
DLs1, 2 = (.002 * a * he1, 2).5   in km.   ITS67 (5a) 

becomes:  
DLs1, 2 = (2 * he1, 2 * a ).5   in meters 

 
The effective earth’s radius a, in kilometers, is defined by ITS67 (1).  The term gma, 
representing earth’s actual curvature, is a simplified approximation, as it treats the 
earth as a sphere, not a spheroid.  It is established in subroutine qlrps to be equal to 
157e–9 1/meter, and used in step 4 of qlrps to calculate the effective earth curvature, 
gme, which is then stored in array prop at prop.gme.  
 
So what is the relationship between a and gma?  One might reasonably assume that 
earth’s actual curvature would be defined as the change per meter of circumference of 
the earth.  If the actual earth’s radius is r, then the earth’s circumference is: 
   

 ce = 2 * (PI)  * r   

 

 and the actual earth’s curvature might be defined, per meter, by 1divided by the 
circumference;  
    gma =  1/ ce  = 1/(2 * PI * r) 
 
So for an actual earth radius of  r = 6,370,000 meters, gma would be = .0000000249 
or 249e-10; but it is not.  The established value for gma is 157e9, equal to 
1/6,370,000 meters.  Therefore, the actual relationship between a and gma is:  
       
    gma =  1/(actual earth’s radius, in meters) 
 



The same relationship therefore applies between the effective earth’s radius and the 
effective earth’s curvature: 
    gme =  1/a, in units of 1/meters, and  a  = 1/ gme. 
 
   
So then,   DLs1, 2 = (2 * he1, 2 * a ).5  m.  becomes  DLs1, 2 = (2 * he1, 2 / gme     ).5  m. 
      
In converting from km to meters:  
 

DL1, 2 = DLs1, 2   exp(– .07 (∆h/he) .5   in km,  ITS67 (5c) 
Becomes: 
  DL1, 2 = DLs1, 2   exp(– .07 (∆h/he) .5   in meters, 
 
Substituting the formula for DLs1, 2 derived above:  
 

DL1, 2 = ( (2 * he1, 2 / gme ) exp(– .07 (∆h/he) .5) .5   in meters, 
where 
  he  =  he1, 2  for  he1, 2   > 5 meters,  or   5 meters otherwise. 
 
Which we can restate in the notation primarily used in this text as: 
 
   Prop.dl[j] =  ((2*prop.he[j]/prop.gme)^( –.07*(prop.dh/mymax(prop.he[j],5)^.5)  
 
The formula for the total distance between the antennas and their horizons is the same 
as long as all units are in either km or meters:   

 
dL  =  dL1  +   dL2 ,  in meters; 

 
 
A problem with this subroutine, with respect to both line-of-sight and trans-
horizon paths, is that the Irregular Terrain Model code, ITMDLL.cpp, still uses 
a formula derived from ITS67 (5c) for the point_to_point mode, despite the fact 
that Anita Longley and Phil Rice flatly stated, at the beginning of paragraph 2, 
page 12 of the ESSA Technical Report ERL 79-ITS 67 quoted above, that it was 
to be used “only when individual path profiles are not available”.   
 
The point_to_point mode utilizes an individual path profile, input as array pfl. 
The use of the NTIA-released ITMDLL.cpp c++ software requires the use of 
additional code, a “wrap-around” package (an example being the open source 
program SPLAT, or its experimental, advanced concept development cousin 
SPLAT with PLOP) that is compiled with the irregular terrain model windows-
compatible software (or in the case of SPLAT, the linux-friendly itm.cpp) that 
prepares the input, including deriving the pfl array from the raw elevation 
database data, and processes the output from the core itm.cpp subroutines, 
 



 The pfl array, especially when used in multiple runs to analyze signal loss 
and/or reception over a large area, usually contains far more elevation data, 
extending along the great circle path through the receive site, than is required to 
derive the distance to the actual horizon.  The first two values stored in the array 
pfl, as sent to the point_to_point subroutine call, are pfl[0], the value of the 
number of intervals, and pfl[1], the value of the width, in meters, of an 
individual interval.  The value of pfl[0] is set to indicate the number of intervals 
between the transmit site, and a receive site to be considered, and indicates the 
minimum number of elevation data values stored in the array pfl.  The value of 
pfl[0] does not necessarily indicate the maximum number of elevation data 
values stored in the array pfl.  The pfl array, especially when used in multiple 
runs to analyze signal loss and/or reception over a large area, usually contains 
far more elevation data, extending along the great circle path through the 
receive site, than is required to derive the distance to the receive site in question, 
as the wrap-around software will store elevation values in the pfl array 
extending out several tens of kilometers, in anticipation of repeating the 
point_to_point call to derive loss values at hundreds of receive locations along 
the rf path being studied.  Therefore, the elevation data stored in the pfl array 
usually, if not always, represents elevation data along the great circle path 
extending far beyond any value of the horizon for a ground-mounted reception 
site.  In the few cases where this data is not available, i.e. where the database 
from which the pfl array was derived does not extend to the horizon, this 
methodology could remain available as a default, and an additional kwx flag 
could be generated, to indicate that the pfl array does not extend to the radio 
horizon and that the distances to the radio horizon are estimated.   
  
Therefore, with today’s comprehensive elevation databases, including the SRTM 
and NED elevation data, there is little or no call to continue to use this 
approximation instead of deriving a more accurate result, where available, for 
the distances to the actual horizons, from the elevation database.    
 
Therefore, this subroutine’s code is eligible for review and revision in order to 
make today’s ITM computer programs operate more in accordance with 
Longley and Rice’s original concept, procedure, and instructions, by deriving 
the actual distance to the radio horizons from the transmit and receive sites, 
from additional terrain profile data in the pfl array. 
 
 
12. The value of prop.dl[0] is estimated as a median value of a horizontal distance 

over irregular terrain using the formula: 
 

 Prop.dl[0] =  ((2*prop.he[0]/prop.gme)^(.07*(prop.dh/mymax(prop.he[0],5)^.5)  
          ITS67 (5c) 
          

Where:  
  prop.he[0] is the effective height of the transmitter site (from step 10)  



prop.he[1] is the effective height of the receive site (from step 10) 
prop.gme is the effective earth’s curvature, input with the point_to_point 
subroutine call 
prop.dh is the terrain irregularity parameter, ∆h, or delta h, obtained from 
the dlthx subroutine call on line 1310. 

  
Similarly, the value of prop dl[1] is estimated as: 

 
Prop.dl[1] =  ((2*prop.he[1]/prop.gme)^( –.07*(prop.dh/mymax(prop.he[1],5)^.5)  

          ITS67 (5c) 
 

Line 1318: for (j=0; j<2; j++) 
prop.dl[j]= 
sqrt(2.0*prop.he[j]/prop.gme)*exp(–0.07*sqrt(prop.dh/mymax(prop.he[j],5.0))); 

 
 
                      
 

13. The variable q is then set to be equal to the combined total of the distance to the 
horizon from the transmit site, dl[0], and the distance to the horizon from the 
receive site dl[1], for a line of sight analysis.            

 
Line 1321:  q=prop.dl[0]+prop.dl[1]; 
 
    

14.  An if loop is initiated; if q, as defined in step 12 above, is less than the total path 
distance from the transmit site to the receive site, then the variable temp is set to 
be equal to the total path distance, prop.dist, divided by q, and the value of q is 
then reset to be equal to the square of the value stored in temp. 

 
A rare comment in the itm.cpp c++ code, referring to the earlier FORTRAN version, 
states:  q=pow(prop.dist/q,2.0); 
       
Line 1323: if (q<=prop.dist) 
  { 
   /* q=pow(prop.dist/q,2.0); */ 
   temp=prop.dist/q; 
   q=temp*temp; 
 
    

15.  A for loop is initiated, again with two loops, j=0 and j=1, for the transmitting and 
receive site locations.  This for loop:   

a. changes the value of prop.he[0] to be equal to the existing value of 
prop.he[0], the effective height of the transmit antenna, multiplied by the 
value of q, and;  



b. changes the value of prop.he[1] to be equal to the existing value of 
prop.he[1], the effective height of the receive antenna, multiplied by the 
value of q. 

c. again resets the value of prop.dl[0], which represents the distance from the 
transmit site to the horizon, to be equal to: 
 

dl[0]= sqrt(2.0*prop.he[0]/prop.gme)*exp(–0.07*sqrt(prop.dh/mymax(prop.he[0],5.0))); 
             ITS67 (5c) 

 
Where, as in step 11 above:  

  prop.he[0] is the effective height of the transmitter site (from step 10) 
 prop.he[1] is the effective height of the receive site (from step 10) 
prop.gme is the effective earth’s curvature, input with the point_to_point 
subroutine call 
prop.dh is the terrain irregularity parameter, ∆h, or delta h, obtained from 
the dlthx subroutine call on line 1310. 

d. And also again resets the value of prop.dl[1], which represents the 
distance from the receive site to the horizon, to be equal to: 
 

dl[1]= sqrt(2.0*prop.he[1]/prop.gme)*exp(–0.07*sqrt(prop.dh/mymax(prop.he[1],5.0))); 
  ITS67 (5c) 

 
Line 1329: for (j=0; j<2; j++) 
   { 
      prop.he[j]*=q; 
      prop.dl[j]=sqrt(2.0*prop.he[j]/prop.gme)*exp(–
0.07*sqrt(prop.dh/mymax(prop.he[j],5.0))); 
   } 
  } 
 

16.  A for loop is initiated, again with two loops, j=0 and j=1, for the transmitting and 
receive site locations.  This for loop determines the value of prop.the[0] and 
prop.the[1], the “theta” angle:   

a. resets the value of q to be equal to 2 * prop.he[0]/prop.gme 
b. sets the value of prop.the[1] equal to: 

prop.the[0]=(0.65*prop.dh*(q/prop.dl[0] –1.0) –2.0*prop.he[0])/q; 
c. resets the value of q to be equal to 2 * prop.he[1]/prop.gme 
d. sets the value of prop.the[1] equal to: 

prop.the[1]=(0.65*prop.dh*(q/prop.dl[1] –1.0) –2.0*prop.he[1])/q; 
 
Line 1336:   for (j=0; j<2; j++) 
  { 
   q=sqrt(2.0*prop.he[j]/prop.gme); 
   prop.the[j]=(0.65*prop.dh*(q/prop.dl[j] –1.0) –2.0*prop.he[j])/q; 
  } 
 } 



 
 

17. Two new steps added for the ITWOM, computes the receiver approach (theta 
receive approach, or θra), and the near receiver approach  (theta near receiver, or 
θnr) angles. 

a. The receive approach path start location, rad, defined as the distance from 
the transmitter site to the receive approach path start location, is set to be 
equal to the maximum of the path distance, prop.dist, or prop.dist-450.  
This defines the receiver approach path to be the 450 meters (or path 
distance, if less) leading up to the receiver. 

b. The subroutine calls zlsq1 with inputs (pfl,rad,prop.dist);  
Where plf is the elevation array;  
rad is the distance from the transmitter to a location 450 meters away from 
of the receive site, or zero (the transmitter site) if the receive site is less 
than 450 meters from the transmitter.   
prop.dist is the path distance from the transmitter site to the receiver site.  

 
Subroutine zlsq1 calculates an average terrain line between rad and the 

receive site, and determines the average elevation height on that line at the 
locations rad and the receive site.  

  
 zlsq1 then returns:  

rae1 = z0, the elevation value in meters of the receiver approach 
path average terrain line at rad, the receive approach path start 
location. 
rae2= z1, the elevation value in meters of the average terrain line 
at the receive site. 

c. The slope is then recovered and converted to an angle, θra, theta receive 
approach, the receive approach angle in radians, to be stored in prop array 
argument prop.thera: 
 

 prop.thera =  arctan((rae2- rae1)/ pfl[1] ); 
 
where   pfl[1] is the interval width in meters. 

      
d. The angle θnr , theta near receiver, the slope angle of a line between the 

last terrain point elevation height before the receiver and the receiver 
terrain height, in radians, is computed from the respective terrain heights 
and the interval width, and stored in prop array argument prop.thenr:  

 
 prop.thenr =  arctan((pfl[np+2]-pfl[np+1])/ pfl[1] ); 
 
where   pfl[np+2] is the elevation height of the receiver 

pfl[np+2] is the elevation height of the terrain database 
location one interval before the receiver. 
pfl[1] is the interval width in meters. 



 
 

Line:  rad=mymax(0.0,prop.dist-450.0); 
  zlsq1(pfl,rad,prop.dist,rae1,rae2); 
  prop.thera=atan((rae2-rae1)/pfl[1]); 

prop.thenr=atan((pfl[np+2]-pfl[np+1])/pfl[1]); 
 

18.  If the path was determined to be line-of-sight, the program then ignores the else 
statement below, and proceeds to step 18.  If the path determination defaulted to 
trans-horizon, the program proceeds to execute the else statement.  

     
a. For a trans-horizon path, the else statement calls zlsq1 with inputs 
(pfl,xl[0],0.9*prop.dl[0]);  
Where plf is the elevation array;  
xl[0] is the transmit site elevation, and  
the term 0.9*prop.dl[0] specifies a location that is at a point 9/10th of the distance 
from the transmit site toward the transmit site horizon.  
 
Subroutine zlsq1 calculates an average terrain line between points x1[0] and the 
point represented by (0.9*prop.dl[0]), and determines the average elevation 
height on that line at the locations x1[0] and (0.9*prop.dl[0]); 

  
 zlsq1 then returns:  

za = z0, the elevation value of the average terrain line at the 
transmitter site. 
q= z1, the elevation value of the average terrain line at the point 
9/10th of the distance from the transmit site toward the transmit 
site horizon. 

   
b. The subroutine zlsq1 is called with inputs (pfl, prop.dist−0.9*prop.dl[1],xl[1]);  
Where:  plf is the elevation array; 

the term (prop.dist−0.9*prop.dl[1]) specifies a location that is at a point   
9/10th of the distance from the receive site toward the receive site horizon, 
and;  
 xl[1] is the receive site elevation  

 
Subroutine zlsq1 calculates an average terrain line between the point represented 
by (prop.dist−0.9*prop.dl[1]), and the point represented by x1[1], and determines 
the average elevation height on that line at those two points; 

  
       zlsq1 then returns:  

q = z0, the elevation value of the average terrain line at a point   
9/10th of the distance from the receive site toward the receive site 
horizon. 
zb = z1, the elevation value of the average terrain line at the 
receive site. 



  
c. The effective height of the transmit site, he(0), is set to be equal to 
prop.hg(0) + pfl(2) – za, but only if pfl(2) > za.  If  pfl(2) is not > za, then 
he(0) is set to be equal to prop.hg(0).  
 
Therefore prop.he(0), the effective height of the transmit site, is set to be 
equal to prop.hg(0); and if the existing ground height of the transmit site, 
pfl(2), is above the average elevation height at the transmit site, za, 
(established by zlsq1), then the difference in height between the average 
transmit site elevation height and the ground height is also added to 
prop.he(0). 
 
d. the effective height of the receive site, prop.he(1), is set to be equal to 
prop.hg(1) + pfl(np+2) – zb, but only if pfl(np+2) > zb.  If  pfl(np+2) is 
not > zb, then prop.he(1) is set to be equal to prop.hg(1). 
 
Therefore prop.he(1) is set to be equal to prop.hg(1), and if the existing 
ground height of the receive site, pfl(np+2), is above the average elevation 
height at the receive site, zb, the difference in height between the average 
receive site elevation height and the ground height is also added to 
prop.he(1). 
 

Note:  The procedures in steps 15 and 16 do for a trans-horizon path what the 
procedure in step 10 does for a line-of-sight path.  Therefore, the note in step 10 
about the October, 2004 comments of Hammett & Edison to the FCC, regarding an 
error in the code, also applies to the code in steps 15 and 16.  
 
 else 
 { 
  z1sq1(pfl,xl[0],0.9*prop.dl[0],za,q); 
  z1sq1(pfl,prop.dist-0.9*prop.dl[1],xl[1],q,zb); 
  prop.he[0]=prop.hg[0]+FORTRAN_DIM(pfl[2],za); 
  prop.he[1]=prop.hg[1]+FORTRAN_DIM(pfl[np+2],zb); 
 } 
 
    

19.   The value of prop.mdp, the mode of the propagation model, is set to be equal to 
– 1, indicating point_to_point mode, and the value of propv.lvar, the level to 
which coefficients in AVAR must be redefined, is set to be equal to the greater 
value of either propv.lvar or 3.            

  
Line:       prop.mdp=-1; 
 propv.lvar=mymax(propv.lvar,3); 
 
 



20.   An if statement is initiated, stating that if mdvarx, a variable representing the 
mode of variability, is greater than zero, (zero representing the single message 
mode), then the value of prov.mdvar is set equal to the value of mdvarx, and the 
value of propv.lvar is set to the be equal to the greater value of propv.lvar, or 4.    

  
 
Line:      if (mdvarx>=0) 
 { 
  propv.mdvar=mdvarx; 
  propv.lvar=mymax(propv.lvar,4); 
 } 
    
 

21.  An if statement is initiated, stating that if klimx, the climate variable, is greater 
than zero, the value of propv.klim, the climate code, is set to be equal to the value 
of klimx, and the value of propv.lvar, which may have been set in step 18 above, 
is reset to be equal to 5.  

 
Line:        if (klimx>0) 
 { 
  propv.klim=klimx; 
  propv.lvar=5; 
 } 
 
Note: for more information re: lvar, mdvar, and klimx, see “A manual for ITM, “Irregular 
Terrain Model”, available at http://flattop.its.bldrdoc.gov/itm/itm_man.txt. 
    

22.  Finally, we arrive at the climax; calculating the Longley-Rice path loss.  The 
subroutine then calls lrprop with inputs 0.0, array prop, and array propa;    

 
Line:            lrprop(0.0,prop,propa); 
} 
 
 lrprop returns the reference attenuation, aref.  This is the “answer”, the amount of 
loss, in db, in the rf signal level between the transmitter and the receiver. 

   
 
 
 



SUBROUTINE QLRPFL2: A functional explanation, by Sid Shumate.   
 
Last Revised: August 15, to catch up on documentation changes.  
Aug. 1, 2010 to add prop.rch[0], prop.rch[2].  
Previous known change as qlrpfl, Sept. 26, 2008 to include receiver approach angle 
calculation. 
 
 
Quick Longley-Rice Profile 
 
Note: Used with point-to-point mode only.  Called by point_to_point after calling qlrps. 
Calls hzns, dlthx (which calls zlsq1 and qtile), after which qlrpfl2 may call zlsq1 directly, 
then ends by calling lrprop.  One may then call avar for quantiles, if desired. 
 
Derived from the Irregular Terrain Model description by George Hufford, 2002, (ITMD), 
compared to the ITM.cpp prepared by J. D. McDonald and John Magliacane for 
compilation on unix and linux systems.  “Line” numbers refer to the ITM.cpp as line 
numbered by Bloodshed Software’s DevC++ print function.  “Alg” numbers refer to the 
algorithm formulas in “The ITS Irregular Terrain Model, version 1.22, the Algorithm” by 
G. A. Hufford, 1995.   “ITS67” numbers refer to the algorithm formulas in “ESSA 
Technical Report ERL 79-ITS 67, Prediction of Tropospheric Radio Transmission Over 
Irregular Terrain, A Computer Method – 1968” by A.G.Longley and P.L.Rice.  
 
Please note that the qlrpfl subroutine, and the dlthx, hzns and zlsq1 subroutines that are 
called during qlrpfl, were intended to be experimental early versions, but are still in use 
today with few modifications or corrections.   George  Hufford, in The ITM Manual 
states:  

 
“It should be noted that the original ITM is silent on many of the details for 
defining some of the path parameters.  This is particularly true of the effective 
heights HE, and, to some lesser degree, of the terrain irregularity parameter DH.  
The effective height, for example is defined as the height above the “effective 
reflecting plane,” and in the past the investigator has been urged to use his own 
best judgement as to where that plane should be placed. The subroutine QLRPFL, 
in trying to automate the definition of all parameters, has been forced to define 
explicitly all missing details. It has done this in a way that seems reasonable and 
in full accord with the intent of the model.   One should not, however, conclude 
that these efforts are completed. Hopefully, better results are obtainable.”       

 
 
From ITMD Section 43: 
 
Call inputs: 
 
pfl terrain elevation profile array, starting at tx, ending at rcvr, following great 

circle path, with: 



  pfl[0] =enp, the number of increments 
  pfl[1] = xi, distance per increment  
  pfl[2] = z(0), the transmitter tower base AMSL, or elevation height 
  pfl[[np+2] = z(np), the receive location AMSL, the last elevation. 
 
klimx  a.k.a. propv.klim, the climate code 
mdvarx a.k.a. propv.mdvar,  the mode of variability; preset to 12.0 in  the 

point_to_point subroutine, and readjusted during qlrpfl2;  
 
defines private, or local, arguments:  
np  number of points  
j  terminal, either 0 (1, or transmit site) or 1 (2, or receive site) 
x1[0]  position on terrain path a short distance from transmitter site, in meters.  
x1[1]  position on terrain path a short distance from receive site, in meters. 
q  ∆h(s), delta h adjusted for the path length 
za elevation value in meters of the average terrain height at the transmit site 
zb elevation value in meters of the average terrain height at the receive site  
temp  temporary value holding variable used at line 1326 and line 1327. 
rad  receive approach path start location, in meters from the transmitter site. 
rae1  receive approach elevation at “rad” in meters. 
rae2  receive approach elevation at receiver in meters. 
 
 
This subroutine: 
 

1. Uses pfl [0], number of points, and pfl [1], increment distance, to calculate path 
length prop.dist. 

 
Line 1302: prop.dist=pfl[0] * pfl[1]; 
 

2. Defines np, number of points, to be equal to the value stored in pfl [0]. 
 
Line 1303: np=(int)pfl (0); 
 

3. Calls subroutine hzns, forwarding as input, arrays pfl and prop. 
 

Line 1304: hzns(pfl,prop);      See separate description for subroutine hzns. 
 

4. hzns returns: 
a. prop.the[0] horizon elevation angle as seen from tx antenna center; 

specified as vertical units of increase or decrease per horizontal distance. 
b. prop.the[1] horizon elevation angle as seen from rcvr antenna center; 

specified as vertical units of increase or decrease per horizontal distance. 
c. prop.dl[0] distance from transmitter tower base to horizon 
d. prop.dl[1] distance from receive antenna ground point to horizon 

 



5.  Argument dlb is set to be equal to the sum of the horizon path lengths, prop.dl[0] 
and prop.dl[1]. 

 
Line (new): dlb=prop.dl[0]+prop.dl[1];; 

6.   
7.  For the use of the saalos subroutine on paths that are past an obstruction, we need 

actual transmitter and receiver antenna heights above mean sea level.  So we 
establish a new set of variables, prop.rch[ ], to hold the actual transmitter and 
receiver radiation center heights above ground level (RC-AMSL). 

 
a. Prop.rch[0], the actual transmit antenna radiation center height above 

mean seal level, RC-AMSL, is set to be equal to the transmitter antenna 
height above ground plus the transmitter ground height above mean sea 
level (AMSL).  

b. Prop.rch[1], the actual receive antenna radiation center height above mean 
seal level, RC-AMSL, is set to be equal to the transmitter antenna height 
above ground plus the transmitter ground height above mean sea level 
(AMSL). 

 
Line (new):   prop.rch[0]=prop.hg[0]+pfl[2]; 

prop.rch[1]=prop.hg[1]+pfl[np+2]; 
 

 A two cycle for loop is initiated to determine the values of x1 and x2. 
c. In the first run, the value of xl[0] (a.k.a. x1, or x-one,) is set to be equal to 

the lesser of:  
i. 15 times the height of the transmit antenna above ground level, or: 

ii. one-tenth of the transmitter to horizon obstruction path length, the 
ground distance from the tx tower site to the horizon obstacle.    

d. In the second run, the value of x1[1] (a.k.a. x2) is first set to be equal to 
the lesser of: 

i. 15 times the height of the receive antenna above ground level, or:  
ii. 1/10 of the distance from the receive site to the horizon.    

e. After the loop is complete, the value of xl[1] is then reset to be equal to 
the path distance less the existing value of x2 determined in step a.  This 
makes it equal to the distance from the transmitter site to the point near the 
receiver site. 

 
Line 1307:   for(j=0; j<2; j++) 

xl[j]=mymin(15.0*prop.hg[j],0.1*prop.dl[j]); 
   

xl[1]=prop.dist-xl[1] 
 

8. The value of prop.dh, the terrain irregularity parameter (a.k.a. delta h) is then 
determined by calling subroutine dlthx2(pfl,xl[0],xl[1].  

 
Line 1310:  prop.dh=dlthx2(pfl,xl[0],xl[1]); 



 
  dlthx2 calls mymin, mymax, assert, zlsql and qtile. 

 
dlthx2 returns dlthxv2, the ∆h (a.k.a. delta h or dh) terrain irregularity 
parameter, which is stored in prop.dh 
 

9. An if statement is initiated to split the path to: 
a. The old method, used with low resolution databases, or in the area mode 

with no database.  This subroutine has been re-ordered to more closely 
match the order of the FORTRAN version in ITS-67.   Tests were run with 
the if dlb<=prop.dist statement enabled, which was buried and inoperative 
in the ITM FORTRAN (ITS-67) and c++ versions 1.2.2 to 7.0.   This 
computation proved to be unstable and problem-causing beyond a distance 
of 67 kilometers, and was reburied, as it is not used for high-definition 
terrain databases, and has been inactive since at least 1967; to leave it 
where it cannot be activated makes it compatible with the ITM versions.  

b. Following an else statement, a new set of instructions to be used when the 
database has interval widths of less than 150 meters, a value set to activate 
for databases of 3-arc-second or smaller interval widths. 

c. If pfl[0], the number of database intervals is equal to none, indicating that 
a terrain database has not been loaded into pfl, and plf[1], the interval 
width is greater than 150 meters, indicating an old terrain database with 
less than 3-arc-seconds between data points, then the old ITM 
methodology is followed for the area mode or for use with a database with 
30 arc second or larger intervals between the terrain data: 

 
Line (new):  If ((pfl[0])=0.0 || (pfl[1]>150.0))  

 
10. Next, a second, embedded if statement is initiated.  If dlb, the sum of prop.dl[0} 

and prop.dl[1], the horizon distances from the transmitter to the horizon and the 
receiver to the horizon, is less than 1.5 times the total path distance prop.dist, then 
the paths of the transmitter to horizon and receiver to horizon do not overlap 
enough to insure that the path is line of sight, and not grazing the earth at the 
horizon.   

 
If the transmit to receive path distance is 10,000 meters (10 km), then the 
combined total of the distance to the horizon from the transmit site, and of the 
distance to the horizon from the receive site, must equal or be greater than 150% 
of 10 km, or 15,000 meters (15 km), overlapping each other by an average of 1/3 
of each, for the RF path to be determined to be a definite line-of-sight path.   
 
As a second example, if there is a single obstacle, then the combination of the 
distance to the horizon (the obstacle) from the transmit site and of the distance to 
the horizon (the obstacle) from the receive site, would equal the total path 
distance, and would therefore not meet or exceed the 150% of total path length 
overlap requirement necessary to determined to be a line-of-sight path.  The 



determination would be made that the path is trans-horizon, i.e. interrupted by a 
mutual horizon, by separate horizons, or by one or more obstacles.   Therefore, if 
dlb is not greater than 1.5*prop.dist, indicating a trans-horizon or trans-obstacles 
path that is not line-of-sight, then: 

 
Line 1312:  if (dlb<1.5*prop.dist) 

 
11. If the path is a line-of-sight path, the if statement then continues: 

a. subroutine zlsql is called with inputs (pfl, x1[0],xl[1]), where: 
i. pfl is the elevation array; 

ii. xl[0] is the transmit site elevation, and  
iii. the term 0.9*prop.dl[0] specifies a location that is at a point that is 

9/10 of the distance from the transmit site toward the transmitter 
site horizon or highest “visible” obstacle.  

b. in order to calculate an average terrain line between points x1[0] and xl[1], 
and determine the average elevation height on that line at the location of 
x1[0] and x1[1], zlsq1 then returns:  

za = z0, the elevation value of the average terrain line at the 
transmitter site. 
q = z1, the elevation value of the average terrain line at the point 
9/10 of the distance from the transmit site toward the transmit 
horizon; either the horizon, or the highest obstruction “visible” 
from the transmitter site.  Note that q here is a placeholder to 
collect a value stored but not used. 
 

c. The subroutine zlsq1 is called again, this time with inputs (pfl, 
prop.dist−0.9*prop.dl[1],xl[1]);  

Where:  plf is the elevation array; 
the term (prop.dist−0.9*prop.dl[1]) specifies a location that is at a point   
9/10th of the distance from the receive site toward the receive site horizon, 
and;  
 xl[1] is the receive site elevation  

 
Subroutine zlsq1 calculates an average terrain line between the point represented 
by (prop.dist−0.9*prop.dl[1]), and the point represented by x1[1], the middle 
80% of the path between the receiver horizon (or the last obstruction), and the 
receiver, and determines the average elevation height on that line at those two 
points; 

  
       zlsq1 then returns:  

q = z0, the elevation value of the average terrain line at a point   
9/10th of the distance from the receive site toward the receive site 
horizon. Note; q here is a placeholder; the subroutine output value 
stored here is not used. 
zb = z1, the elevation value of the average terrain line at the 
receive site. 



  
 
 

d. The effective height of the transmit site, he(0), is set to be equal to 
prop.hg(0) + pfl(2) – za, but only if pfl(2) > za.  If  pfl(2) is not > za, then 
he(0) is set to be equal to prop.hg(0).  
 
Therefore prop.he(0), the effective height of the transmit site, is set to be 
equal to the transmitter antenna height above ground, prop.hg(0), and, (if 
the actual ground height of the transmit site, pfl(2), is above the average 
elevation height plane end point at the transmit site, za, as established in 
zlsq1), then the amount of the difference in height, found by subtracting 
the average elevation height plane transmit end point height, za, from the 
actual transmitter site ground height from pfl[2], is added to prop.he(0). 
 
d. the effective height of the receive site, prop.he(1), is then similarly set 
to be equal to prop.hg(1) + pfl(np+2) – zb, but only if pfl(np+2) > zb.  If  
pfl(np+2) is not > zb, then prop.he(1) is set to be equal to prop.hg(1). 
 
Therefore prop.he(1) is set to be equal to prop.hg(1), and if the existing 
ground height of the receive site, pfl(np+2), is above the average elevation 
plane end point height at the receive site, zb, the difference in height 
between the average receive site elevation height and the ground height is 
also added to prop.he(1). 
 

 
NOTE:   In October of 2004, Hammett & Edison, a well respected and highly regarded 
communications engineering consulting firm in San Francisco, CA, submitted comments 
to the Federal Communications Commission (FCC) in CS Docket 98-201, regarding the 
use of Longley-Rice in calculating Grade B TV Signal Coverage.  They stated in 
paragraph 20: 
 
 “This ongoing work has convinced us that the implementation of the L-R model is even 
more flawed than had been originally suspected.  For example is has come to light that 
the OET-69 software calculates the depression angle to a calculation point using the 
sources height above ground, not its height above sea level.   This coding mistake by 
itself will introduce errors of perhaps 10-20 dB in the calculation results.”   
 
The error noted by Hammett and Edison, however, occurs in the FCC’s wrap 
around software, not in the ITM.  The ITM has its own problems, which are 
discussed at the appropriate times.  
 
First, however, we continue to describe the function of the software:   
 

12.  In the ITM source code, the effective heights of the transmitter and receiver are 
originally derived from the input to the call to point_to_point, for tht_m and 



thr_m, the transmitter and receiver antenna radiation center heights above ground 
level, RC-AGL, both in meters.  To this is added the height of the transmitter and 
receiver sites, in meters, above mean sea level, obtained from the profile (pfl) 
array, which comes from the elevation (elev) array input in the call to 
point_to_point.  

 
Line  :  zlsq1(pfl,xl[0],0.9*prop.dl[0],za,q); 

zlsq1(pfl,prop.dist-0.9*prop.dl[0],xl[1],q,zb); 
prop.he[0]=prop.hg[0]+FORTRAN_DIM(pfl[2],za); 

  prop.he[1]=prop.hg[1]+FORTRAN_DIM(pfl[np+2],zb); 
  } 
 
Note: In ITS 67, section 2.4, on page 9 and on page 12, it states that these approximations 
should only be used when individual path profiles are not available to use to more exactly 
compute the terrain reflection points, terminal heights, horizon and/or obstruction 
distances and elevation angles, using subroutine hzns; today, this should apply for area 
mode only.  These approximations have therefore been bypassed for ITWOM for 3-arc-
second and finer terrain profiles, and the effective heights are determined by adding the 
height above ground, hg0,1 to the ground height from the terrain database height array 
pfl2,np+2. 
 

13.  Above, subroutine qlrpfl2 modifies the effective heights to be no lower than the 
effective reflection plane between the transmitter and the receiver, as represented 
by its end points, za and zb.  Qlrpfl2 also modifies the effective heights when the 
path transitions from the old, original line-of sight range into the old, original 
beyond-the-horizon range.   

 
14. A for loop, with two loops (j=0 and j=1), within the above for loop (started in 

Step 5.) is initiated here, to determine or re-determine the values of prop.dl[0], the 
distance from the transmitter site to the horizon, and prop dl[1], the distance from 
the receive site to the horizon, for a line of sight analysis.    

 
NOTE:  The Environmental Science Services Administration (ESSA) Technical 
Report ERL 79-ITS 67, “Prediction of Tropospheric Radio Transmission Loss Over 
Irregular Terrain, A Computer Method – 1968” by A.G. Longley and P. L. Rice, 
states on page 12, starting with paragraph 2:  
 

“When individual path profiles are not available, median values of the horizon 
distances dL1,2  are estimated as functions of the median effective antenna heights 
he1 and he2 determined above, the terrain irregularity factor ∆h, and the smooth-
earth horizon distances DLs1  and DLs2 .  The smooth earth distance from each 
antenna to its horizon over a smooth earth is defined as:  

 
DLs1, 2 = (.002 * a * he1, 2).5   in km.   ITS67 (5a) 

  



where the effective antenna heights he1, 2 are in meters and the effective earth’s 
radius a is in kilometers, as defined by (1).   The sum of the smooth-earth horizon 
distance is  

DLs  =  DLs1  +   DLs2 ,  in km.      ITS67 (5b) 
 
 Median values of horizon distances over irregular terrain are estimated as  
 

 DL1,2 = DLs1,2   exp(– .07 (∆h/he) .5   in km,  ITS67 (5c) 
 where 
   he  =  he1, 2  for  he1, 2   > 5 meters,  or   5 meters otherwise. 
 
 The total distance, dL, between the antennas and their horizons is  
 

   dL  =  dL1  +   dL2 ,  in km”.   ITS67 (5d) 
    
To use these formulas in this subroutine, we convert from km to meters: 

 
DLs1,2 = (.002 * a * he1, 2).5   in km.   ITS67 (5a) 

becomes:  
DLs1, 2 = (2 * he1, 2 * a ).5   in meters 

 
The effective earth’s radius a, in kilometers, is defined by ITS67 (1).  The term gma, 
representing earth’s actual curvature, is a simplified approximation, as it treats the 
earth as a sphere, not a spheroid.  It is established in subroutine qlrps to be equal to 
157e–9 1/meter, and used in step 4 of qlrps to calculate the effective earth curvature, 
gme, which is then stored in array prop at prop.gme.  
 
So what is the relationship between a and gma?  One might reasonably assume that 
earth’s actual curvature would be defined as the change per meter of circumference of 
the earth.  If the actual earth’s radius is r, then the earth’s circumference is: 
   

 ce = 2 * (PI)  * r   

 

 and the actual earth’s curvature might be defined, per meter, by 1divided by the 
circumference;  
    gma =  1/ ce  = 1/(2 * PI * r) 
 
So for an actual earth radius of  r = 6,370,000 meters, gma would be = .0000000249 
or 249e-10; but it is not.  The established value for gma is 157e9, equal to 
1/6,370,000 meters.  Therefore, the actual relationship between a and gma is:  
       
    gma =  1/(actual earth’s radius, in meters) 
 
The same relationship therefore applies between the effective earth’s radius and the 
effective earth’s curvature: 
    gme =  1/a, in units of 1/meters, and  a  = 1/ gme. 



 
   
So then,   DLs1, 2 = (2 * he1, 2 * a ).5  m.  becomes  DLs1, 2 = (2 * he1, 2 / gme     ).5  m. 
      
In converting from km to meters:  
 

DL1, 2 = DLs1, 2   exp(– .07 (∆h/he) .5   in km,  ITS67 (5c) 
Becomes: 
  DL1, 2 = DLs1, 2   exp(– .07 (∆h/he) .5   in meters, 
 
Substituting the formula for DLs1, 2 derived above:  
 

DL1, 2 = ( (2 * he1, 2 / gme ) exp(– .07 (∆h/he) .5) .5   in meters, 
where 
  he  =  he1, 2  for  he1, 2   > 5 meters,  or   5 meters otherwise. 
 
Which we can restate in the notation primarily used in this text as: 
 
   Prop.dl[j] =  ((2*prop.he[j]/prop.gme)^( –.07*(prop.dh/mymax(prop.he[j],5)^.5)  
 
The formula for the total distance between the antennas and their horizons is the same 
as long as all units are in either km or meters:   

 
dL  =  dL1  +   dL2 ,  in meters; 

 
 
This subroutine, with respect to both line-of-sight and trans-horizon paths, is that the 
Irregular Terrain Model code, ITMDLL.cpp, still uses a formula derived from ITS67 
(5c) to estimate horizon distances for the point_to_point mode, despite the fact that 
Anita Longley and Phil Rice flatly stated, at the beginning of paragraph 2, page 12 of 
the ESSA Technical Report ERL 79-ITS 67 quoted above, that it was to be used 
“only when individual path profiles are not available”.   
 
The point_to_point mode utilizes an individual path profile, input as array pfl. 
The use of the NTIA-released ITMDLL.cpp c++ software requires the use of 
additional code, a “wrap-around” package (an example being the open source 
program SPLAT, or the Givens & Bell Inc. LORIS series, that is compiled with the 
irregular terrain model windows-compatible software (or in the case of SPLAT!, the 
linux-friendly itm.cpp) that prepares the input, including deriving the pfl array from 
the raw elevation database data, and processes the output from the core itm.cpp 
subroutines. 
 
 The pfl array, especially when used in multiple runs to analyze signal loss and/or 
reception over a large area, usually contains far more elevation data, extending along 
the great circle path through the receive site, than is required to derive the distance to 
the actual horizon.  The first two values stored in the array pfl, as sent to the 



point_to_point subroutine call, are pfl[0], the value of the number of intervals, and 
pfl[1], the value of the width, in meters, of an individual interval.  The value of pfl[0] 
is set to indicate the number of intervals between the transmit site, and a receive site 
to be considered, and indicates the minimum number of elevation data values stored 
in the array pfl.  The value of pfl[0] does not necessarily indicate the maximum 
number of elevation data values stored in the array pfl.  The pfl array, especially 
when used in multiple runs to analyze signal loss and/or reception over a large area, 
usually contains far more elevation data, extending along the great circle path through 
the receive site, than is required to derive the distance to the receive site in question, 
as the wrap-around software will store elevation values in the pfl array extending out 
several tens of kilometers, in anticipation of repeating the point_to_point call to 
derive loss values at hundreds of receive locations along the rf path being studied.  
Therefore, the elevation data stored in the pfl array usually, if not always, represents 
elevation data along the great circle path extending far beyond any value of the 
horizon for a ground-mounted reception site.  In the few cases where this data is not 
available, i.e. where the database from which the pfl array was derived does not 
extend to the horizon, this methodology could remain available as a default, and an 
additional kwx flag could be generated, to indicate that the pfl array does not extend 
to the radio horizon and that the distances to the radio horizon are estimated.   
  
Therefore, with today’s comprehensive elevation databases, including the SRTM and 
NED elevation data, there is little or no call to continue to use this approximation 
instead of deriving a more accurate result, where available, for the distances to the 
actual horizons, from the elevation database.   Subroutine hzns later replaces these 
estimates with actual values. 
 
15. The value of prop.dl[0] is estimated as a median value of a horizontal distance 

over irregular terrain using the formula: 
 

 Prop.dl[0] =  ((2*prop.he[0]/prop.gme)^(.07*(prop.dh/mymax(prop.he[0],5)^.5)  
          ITS67 (5c) 
          

Where:  
  prop.he[0] is the effective height of the transmitter site (from step 10)  

prop.he[1] is the effective height of the receive site (from step 10) 
prop.gme is the effective earth’s curvature, input with the point_to_point 
subroutine call 
prop.dh is the terrain irregularity parameter, ∆h, or delta h, obtained from 
the dlthx subroutine call on line 1310. 

  
Similarly, the value of prop dl[1] is initially estimated as: 

 
Prop.dl[1] =  ((2*prop.he[1]/prop.gme)^( –.07*(prop.dh/mymax(prop.he[1],5)^.5)  

          ITS67 (5c) 
 

Line 1318: for (j=0; j<2; j++) 



prop.dl[j]= 
sqrt(2.0*prop.he[j]/prop.gme)*exp(–0.07*sqrt(prop.dh/mymax(prop.he[j],5.0))); 

                     
 

16. The variable q is then set to be equal to the combined total of the distance to the 
horizon from the transmit site, dl[0], and the distance to the horizon from the 
receive site dl[1], for a line of sight analysis.            

 
Line 1321:  q=prop.dl[0]+prop.dl[1]; 
 
Note:  Many of these initial estimates are replaced later by actual values obtained from 
the terrain database; for example, after the hzns subroutine is called, the horizon 
distances in prop.dl[] will have been reset based on the actual horizon and/or obstacles 
found in the terrain radial path.    
  

17. An if loop is initiated; if q, currently holding the sum of the transmitter and 
receiver estimated horizon distances (later known as dla), is less than the total 
path distance from the transmit site to the receive site, then the variable temp is set 
to be equal to the total path distance, prop.dist, divided by q, and the value of q is 
then reset to be equal to the square of the value stored in temp. 
 
Therefore, the If statement determines if the sum of the horizon path distances is 
less than the total path distance.  If so, then a rounded horizon, or two obstacles, 
separates the transmitter horizon from the receive horizon, and the path analysis is 
ready to move from the line-of-sight range into the diffraction range.  The two 
following calculations then result in the utility variable q holding the value of:  

 
  q = [prop.dist/(prop.dl[0]+prop.dl[1])]2

 
A rare comment in the itm.cpp c++ code, referring to the earlier FORTRAN version, 
states:  q=pow(prop.dist/q,2.0); indicating that the ITMDLL.cpp may have used that 
version of this calculation.   A pow calculation is a relatively slow c++ computation; in 
the itm.cpp, we find a faster version: 
       
Line 1323: if (q<=prop.dist) 
  { 
   /* q=pow(prop.dist/q,2.0); */ 
   temp=prop.dist/q; 
   q=temp*temp; 
    

18.  A for loop is initiated, again with two loops, j=0 and j=1, for the transmitting and 
receive site locations.  This for loop:   

a. changes the value of prop.he[0] to be equal to the existing value of 
prop.he[0], the effective height of the transmit antenna, multiplied by the 
value of q, and;  



b. changes the value of prop.he[1] to be equal to the existing value of 
prop.he[1], the effective height of the receive antenna, multiplied by the 
value of q. 

c. again resets the value of prop.dl[0], which represents the distance from the 
transmit site to the horizon, to be equal to: 
 

dl[0]= sqrt(2.0*prop.he[0]/prop.gme)*exp(–0.07*sqrt(prop.dh/mymax(prop.he[0],5.0))); 
             ITS67 (5c) 

 
Let’s take a look at the effect of the adjustment of the effective heights.  When the 

sum of the two horizon distances are equal, as they would be just as the horizon starts 
to interrupt the path, or when one obstacle separates the transmitter and receiver, the 
value of q would be 1 or near 1, and the adjustment of the effective heights would be 
minimal.  As the single obstacle becomes two obstacles, and the distance between 
them increases, q would increase; for a scenario with two obstacles, where the 
distance between the obstacles is equal to the sum of the two horizon distances, then q 
would equal [(1+2+1)/(1+1)]2=4, and each effective height would be increased by a 
factor of 4!  So the effective height of the transmit and receive antennas is increased 
in the diffraction range as the distance between the transmitter horizon obstacle and 
the receive horizon obstacle increases.  

 
Where, as in step 11 above:  

  prop.he[0] is the effective height of the transmitter site (from step 10) 
 prop.he[1] is the effective height of the receive site (from step 10) 
prop.gme is the effective earth’s curvature, input with the point_to_point 
subroutine call 
prop.dh is the terrain irregularity parameter, ∆h, or delta h, obtained from 
the dlthx subroutine call on line 1310. 

d. And also again resets the value of prop.dl[1], which represents the 
distance from the receive site to the horizon, to be equal to: 
 

dl[1]= sqrt(2.0*prop.he[1]/prop.gme)*exp(–0.07*sqrt(prop.dh/mymax(prop.he[1],5.0))); 
  ITS67 (5c) 

 
Line 1329: for (j=0; j<2; j++) 
   { 
      prop.he[j]*=q; 
      prop.dl[j]=sqrt(2.0*prop.he[j]/prop.gme)*exp(–
0.07*sqrt(prop.dh/mymax(prop.he[j],5.0))); 
   } 
  } 
 

19.  A for loop is initiated, again with two loops, j=0 and j=1, for the transmitting and 
receive site locations.  This for loop determines the initial value of prop.the[0], the 
“theta” look-up, or grazing, angle between a line from the transmitter antenna and 



the horizon or highest “visible” obstruction, and a horizontal line at the 
transmitter antenna, and prop.the[1], the receive site look-up angle:   

a. resets the value of q to be equal to 2 * prop.he[0]/prop.gme 
b. sets the value of prop.the[1] equal to: 

prop.the[0]=(0.65*prop.dh*(q/prop.dl[0] –1.0) –2.0*prop.he[0])/q; 
c. resets the value of q to be equal to 2 * prop.he[1]/prop.gme 
d. sets the value of prop.the[1] equal to: 

prop.the[1]=(0.65*prop.dh*(q/prop.dl[1] –1.0) –2.0*prop.he[1])/q; 
 
Line 1336:   for (j=0; j<2; j++) 
  { 
   q=sqrt(2.0*prop.he[j]/prop.gme); 
   prop.the[j]=(0.65*prop.dh*(q/prop.dl[j] –1.0) –2.0*prop.he[j])/q; 
  } 
 } 
 

20. An else statement follows, so for when the number of terrain database intervals is 
greater than zero, indicating the use of a terrain database and the point-to-point 
mode instead of the area mode, and the terrain database has interval distances 
smaller than 150 meters (a 3-arc-second terrain database or better), then: 

 
21. Two new steps added for the ITWOM, computes the receiver approach (theta 

receive approach, or θra), and the near receiver approach  (theta near receiver, or 
θnr) angles. 

a. The receive approach path start location, rad, defined as the distance from 
the transmitter site to the receive approach path start location, is set to be 
equal to the maximum of the path distance, prop.dist, or prop.dist-450.  
This defines the receiver approach path to be the 450 meters (or path 
distance, if less) leading up to the receiver. 

b. The subroutine calls zlsq1 with inputs (pfl,rad,prop.dist);  
Where plf is the elevation array;  
rad is the distance from the transmitter to a location 550 meters away from 
of the receive site, or zero (the transmitter site) if the receive site is less 
than 550 meters from the transmitter.   
prop.dist is the path distance from the transmitter site to the receiver site.  

 
Subroutine zlsq1 calculates an average terrain line between rad and the 

receive site, and determines the average elevation height on that line at the 
locations rad and the receive site.  

  
 zlsq1 then returns:  

rae1 = z0, the elevation value in meters of the receiver approach 
path average terrain line at rad, the receive approach path start 
location. 
rae2= z1, the elevation value in meters of the average terrain line 
at the receive site. 



c. The slope is then recovered and converted to an angle, θra, theta receive 
approach, the receive approach angle in radians, to be stored in prop array 
argument prop.thera: 
 

 prop.thera =  arctan((rae2- rae1)/ pfl[1] ); 
 
where   pfl[1] is the interval width in meters. 

      
d. The angle θnr , theta near receiver, the slope angle of a line between the 

last terrain point elevation height before the receiver and the receiver 
terrain height, in radians, is computed from the respective terrain heights 
and the interval width, and stored in prop array argument prop.thenr:  

 
 prop.thenr =  arctan((pfl[np+2]-pfl[np+1])/ pfl[1] ); 
 
where   pfl[np+2] is the elevation height of the receiver 

pfl[np+2] is the elevation height of the terrain database 
location one interval before the receiver. 
pfl[1] is the interval width in meters. 

 
 

Line:  rad=mymax(0.0,prop.dist-450.0); 
  zlsq1(pfl,rad,prop.dist,rae1,rae2); 
  prop.thera=atan((rae2-rae1)/pfl[1]); 

prop.thenr=atan((pfl[np+2]-pfl[np+1])/pfl[1]); 
 

   
22.   The value of prop.mdp, the mode of the propagation model, is set to be equal to 

– 1, indicating point_to_point mode, and the value of propv.lvar, the level to 
which coefficients in AVAR must be redefined, is set to be equal to the greater 
value of either propv.lvar or 3.            

  
Line:       prop.mdp=-1; 
 propv.lvar=mymax(propv.lvar,3); 
 
 

23.   An if statement is initiated, stating that if mdvarx, a variable representing the 
mode of variability, is greater than zero, (zero representing the single message 
mode), then the value of prov.mdvar is set equal to the value of mdvarx, and the 
value of propv.lvar is set to the be equal to the greater value of propv.lvar, or 4.    

  
 
Line:      if (mdvarx>=0) 
 { 
  propv.mdvar=mdvarx; 
  propv.lvar=mymax(propv.lvar,4); 



 } 
    
 

24.  An if statement is initiated, stating that if klimx, the climate variable, is greater 
than zero, the value of propv.klim, the climate code, is set to be equal to the value 
of klimx, and the value of propv.lvar, which may have been set in step 18 above, 
is reset to be equal to 5.  

 
Line:        if (klimx>0) 
 { 
  propv.klim=klimx; 
  propv.lvar=5; 
 } 
 
Note: for more information re: lvar, mdvar, and klimx, see “A manual for ITM, “Irregular 
Terrain Model”, available at http://flattop.its.bldrdoc.gov/itm/itm_man.txt. 
    

25.  Finally, we arrive at the climax; calculating the Longley-Rice path loss.  The 
subroutine then calls lrprop with inputs 0.0, array prop, and array propa;    

 
Line:            lrprop2(0.0,prop,propa); 
} 
 
 lrprop returns the reference attenuation, aref.  This is the “answer”, the amount of 
loss, in db, in the rf signal level between the transmitter and the receiver. 

   
 
 
 



SUBROUTINE QLRPS: A functional explanation, by Sid Shumate.   
 
Started, May 2007; Last Revised Sept  16, 2007. 
 
Quick Longley-Rice Preparatory Subroutine; qlrps.   
 
Subroutine starts at Line 370. 
 
Note: Used with both point-to-point and area prediction modes. 
 
Derived from the Irregular Terrain Model description by George Hufford, 2002, (ITMD), 
compared to the ITM.cpp prepared by J. D. McDonald and John Magliacane for 
compilation on unix and linux systems.  “Line” numbers refer to the ITM.cpp as line 
numbered by Bloodshed Software’s DevC++ print function.  “Alg” numbers refer to the 
algorithm formula in “The ITS Irregular Terrain Model, version 1.22, the Algorithm” by 
G. A. Hufford, 1995.  “TN101” numbers refer to equations in “Tech Note 101”. 
 
From ITMD Section 41: 
 
Call inputs: 
 
fmhz  Frequency, in MHz  range 20 up to 2,000  
zsys general system elevation (calculated by lrprop subroutine to be the 

average elevation of  the middle 80% of elev_l (a.k.a. pfl) path  
elevations, starting at 1/10 of the path and ending at 9/10 of the path.) 

en0  Surface refractivity reduced to sea level (a.k.a. Atmospheric Bending  
Constant); normal default value = 301.000 N-Units 

ipol  polarity (H=0, V=1) for FM vehicular reception, normal default =1 
eps polarization constant (a.k.a. Earth’s Dielectric Constant, or Relative 

permittivity); normal default value = 15.000 
sgm ground constant (a.k.a. Earth’s Conductivity);  

normal default value = 0.005 Siemens/meter 
 
 
This subroutine: 
 

1. Declares and establishes the constant gma to be equal to 157e-9.   The constant 
gma represents an approximation of earth’s actual curvature, as it represents the 
curvature of a sphere, where the earth is in fact, a spheroid.  The “earth’s actual 
curvature” is specified as:  157 N-units/km., or (157 * 10^-9)/m.  The units of 
gma is 1/meter.   

 
Line 372: double gma = 157e-9 

 
2. Converts the frequency fmhz, to wave number wn . 

 



Line 374:   prop.wn=fmhz/47.7  [Alg. 1.1] 
 
 The wave number at 100 MHz, as an example, would be = 2.0964/meter. 
 

3. Uses the surface refractivity reduced to sea level, en0, and the general system 
elevation, zsys, to calculate the surface refractivity, ens, using the formula: 

 
ens = en0^(-zsys/z1),  where z1 = 9,460 m.  [Alg. 1.2] 

 
 

Line 375: prop.ens=en0   
Line 377: if (zsys!=0.0)    /* zsys is preset to 0 by point_to_point for first round. */ 
Line 380: Prop.ens*=exp(-zsys/9460.0)           /* if zsys is not equal to 0.0, multiply  

      Zsys by the exponent (-zsys/9460.0). 
        
 If, for example, zsys =946 m., ens =eno^(-.1) = 301^(-.1) = .565 N-units. 
 
 

4. Uses the constant gma, earth’s actual curvature, and the surface refractivity ens 
(prop.ens) calculated on line 380, to calculate the effective earth curvature gme  
(prop.gme), using the empirical formula gme=gma*(1-0.04665^(ens/en1)) 
[Alg. 1.3] , Where en1 is 179.3 N-units.   

 
Line 380:  prop.gme=gma*(1.0-0.04665*exp(prop.ens/179.3))  

 If, for example, ens = .565 N-units,  
 

prop.gme =(157*10^(-9))*(1-(.04665)^(.565/179.3))= (1.509e-9)/meters. 
  
 Units for prop.gme are: 1/meters. 
 

5. Calls complex, a c++ subroutine, to use the  polarization constant, eps, the ground 
constant, sgm, the wave number wn  (prop.wn), and the polarity ipol,  to calculate 
the surface impedance zgnd (prop_zgnd) as a complex number, with both real 
(resistance)  and imaginary (impedance) values. 

 
Line 381:    complex<double> zq, prop_zgnd(prop.zgndreal,prop.zgndimag); 
Line 382: zq=complex<double> (eps, 376.62*sgm/prop.wn);  [Alg. 1.5] 
Line 383: prop_zgnd=sqrt(zq-1.0)      
 
Line 385: if (ipol!=0.0) 
Line 386: prop_zgnd=prop_zgnd/zq;  [Alg. 1.4] 
 
Line 388: prop.zgndreal=prop_zgnd.real() 
Line 399:  prop.zgndimag=prop_zgnd.imag() 
 

6. Outputs to prop_type structure (prop_type & prop) : 



a. Prop.wn wave number 
b. prop.ens surface refractivity 
c. prop.gme effective earth curvature 
d. prop.zgnd surface impedance 
e. prop.zgndreal  real surface impedance (resistance component) 
f. prop.zgndimag imaginary surface impedance (reactive component) 



SUBROUTINE QTILE: A functional explanation, by Sid Shumate.   
Last Revised May 18, 2007. 
 
Quartile subroutine: qtile. 
 
Note: Used with point-to-point mode.  Called by dlthx, near the end of the routine.  
Calls mymin, mymax. 
 
Derived from the Irregular Terrain Model description by George Hufford, 2002, (ITMD), 
compared to the ITM.cpp prepared by J. D. McDonald and John Magliacane for 
compilation on unix and linux systems.  “Line” numbers refer to the ITM.cpp as line 
numbered by Bloodshed Software’s DevC++ print function.  “Alg” numbers refer to the 
algorithm formula in “The ITS Irregular Terrain Model, version 1.22, the Algorithm” by 
G. A. Hufford, 1995. 
 
Used to find a quartile.  It reorders the array a so that a(j),j = 0..ir are all greater than or 
equal to all a(i),i = ir….nn.  In particular, a(ir) will have the same value it would have if 
a were completely sorted in descending order.  The returned value is qtile = a(ir).  
 
 
 
Some Background on Quantile Definitions and Methodologies: 

From Wikipedia: 

Quantiles are points taken at regular intervals from the cumulative distribution function 
of a random variable. Dividing ordered data into q essentially equal-sized data subsets is 
the motivation for q-quantiles; the quantiles are the data values marking the boundaries 
between consecutive subsets. Put another way, the kth q-quantile is the value x such that 
the probability that a random variables will be less than x is at most k/q and the 
probability that a random variable will be less than or equal to x is at least k/q. There are 
q − 1 quantiles, with k an integer satisfying 0 < k < q. 

Some quantiles have special names: 

• The 100-quantiles are called percentiles. 
• The 20-quantiles are called duo-deciles. 
• The 10-quantiles are called deciles. 
• The 9-quantiles are called noniles, common in educational testing. 
• The 5-quantiles are called quintiles. 
• The 4-quantiles are called quartiles. 

More generally one can consider the quantile function for any distribution. This is 
defined for real variables between zero and one and is mathematically the inverse of the 
cumulative distribution function. 



Some software programs (including Microsoft Excel) regard the minimum and maximum 
as the 0th and 100th percentile, respectively; however, such terminology is an extension 
beyond traditional statistics definitions. For an infinite population, the kth quantile is the 
data value where the cumulative distribution function is equal to k/q. For a finite N 

sample size, calculate --if this is not an integer, then round up to the next 
integer to get the appropriate sample number (assuming samples ordered by increasing 
value); if it is an integer then any value from the value of that sample number to the value 
of the next can be taken as the quantile, and it is conventional (though arbitrary) to take 
the average of those two values (see Estimating the quantiles ). 

More formally: the kth "q"-quantile of the population parameter X can be defined as the 
value "x" such that: 

where  

or equivalently 

where  

If instead of using integers k and q, the p-quantile is based on a real number p with 0<p<1 
then this becomes: The p-quantile of the distribution of a random variable X can be 
defined as the value(s) x such that: 

 

or equivalently 

 

For example, given the 10 data values {3, 6, 7, 8, 8, 10, 13, 15, 16, 20}, the first quartile 
is determined by 10*(1/4) = 2.5, which rounds up to 3, meaning that 3 is the rank in order 
of samples (from least to greatest values), at which, approximately 1/4 samples have 
values less than this third sample, which in this case is 7. The second quartile value (same 
as the median) is determined by 10*(2/4) = 5, which is an integer, while the number of 
samples (10) is an even number, so the average of both the fifth and sixth values is taken-
-that is (8+10)/2 = 9, though any value from 8 through to 10 could be taken to be the 
median. If the number of data values is odd, then the median value (or 2nd quartile) is the 
value found at sample=(#values + 1)/2 (so for this example if there had also been a value 
of 9 between values 8 and 10, making 11 samples total, then (11+1)/2=6, meaning that 
the sixth sample (in this case the value 9), would be the 2nd quartile, where 1/2 of the 
samples have values greater than the value at this sample (greater than 9--the value at 
sample 6 of 11), and 1/2 of the samples have values less than the value at this sample. 



The third quartile value for the original example above is determined by 10*(3/4) = 7.5, 
which rounds up to 8, and the eighth sample is 15. The motivation for this method is that 
the first quartile should divide the data between the bottom quarter and top three-quarters. 
Ideally, this would mean 2.5 of the samples are below the first quartile and 7.5 are above, 
which in turn means that the third data sample is "split in two", making the third sample 
part of both the first and second quarters of data, so the quartile boundary is right at that 
sample. 

Standardized test results are commonly misinterpreted as a student scoring "in the 80th 
percentile", for example, as if the 80th percentile is an interval to score "in", which it is 
not; one can score "at" some percentile or between two percentiles, but not "in" some 
percentile. 

It should be noted that different software packages use slightly varying algorithms, so the 
answer they produce may be slightly different for any given set of data. Besides the 
algorithm given above, which is the proper one based on probability, there are at least 
four other algorithms commonly used (for various reasons, such as of ease of 
computation, ignorance, etc.). 

If a distribution is symmetrical, then the median is the mean (so long as the latter exists). 
But in general, the median and the mean differ. For instance, with a random variable that 
has an exponential distribution, any particular sample of this random variable will have 
roughly a 63% chance of being less than the mean. This is because the exponential 
distribution has a long tail for positive values, but is zero for negative numbers. 

Quantiles are useful measures because they are less susceptible to long tailed 
distributions and outliers. 

Empirically, if the data you are analyzing are not actually distributed according to your 
assumed distribution, or if you have other potential sources for outliers that are far 
removed from the mean, then quantiles may be more useful descriptive statistics than 
means and other moment related statistics. 

Closely related is the subject of least absolute deviations, a method of regression that is 
more robust to outliers than is least squares, in which the sum of the absolute value of the 
observed errors is used in place of the squared error. The connection is that the mean is 
the single estimate of a distribution that minimizes expected squared error while the 
median minimizes expected absolute error. Least absolute deviations shares the ability to 
be relatively insensitive to large deviations in outlying observations, although even better 
methods of robust regression are available. 

The quantiles of a random variable are generally preserved under increasing 
transformations, in the sense that for example if m is the median of a random variable X 
then 2m is the median of 2X, unless an arbitrary choice has been made from a range of 
values to specify a particular quantile. Quantiles can also be used in cases where only 
ordinal data is available. 



[edit] Estimating the quantiles
There are several methods for estimating the quantiles: 

Let N be the number of non-missing values of the sample population, and let 
represent the ordered values of the sample population such that x1 is 

the smallest value, etc. For the kth q-quantile, let p = k / q. 

Empirical distribution function  

 

j is the integer part of and g is the fractional part 

Empirical distribution function with averaging  

 

j is the integer part of and g is the fractional part 

Weighted average  

 

j is the integer part of and g is the fractional part. This method is used for 
example in the PERCENTILE function of Microsoft Excel. 

Sample number closest to (N-1)·p+1  

 

j is the integer part of and g is the fractional part 

 
 
 
 
 
 
 



And from:   Weisstein, Eric W. "Quantile." From MathWorld--A Wolfram Web 
Resource. http://mathworld.wolfram.com/Quantile.html  
 

The word quantile has two meanings in probability. Specific elements in the 
range of a variate are called quantiles, and denoted (Evans et al. 2000, p. 5).  

The th -tile is that value of , say , which corresponds to a cumulative 
frequency of (Kenney and Keeping 1962). If , the quantity is called a 
quartile, and if , it is called a percentile.  

A parametrized version of quantile is implemented as Quantile[list, q, a, b , c, 
d ], which returns  

 

where is the th order statistic, is the floor function, is the ceiling function, 
is the fractional part, and  

 

There are a number of slightly different definitions of the quantile that are in 
common use, as summarized in the following table.  

#     
plotting 
position Description 

Q1 0 0 1 0  inverted empirical CDF 
Q2 -- -- -- --  inverted empirical CDF with averaging 

Q3  0 0 0  observation numberer closest to  

Q4 0 0 0 1  California Department of Public Works method 

Q5  0 0 1  Hazen's model (popular in hydrology) 

Q6 0 1 0 1  Weibull quantile 

Q7 1 -1 0 1  
interpolation points divide sample range into 
intervals 

Q8   0 1  unbiased median 

Q9   0 1  
approximate unbiased estimate for a normal 
distribution 

Mathematica's parametrization can handle all of these but Q2. In Q1, the 
empirical cumulative distribution function is the estimated cumulative proportion 
of the data set that does not exceed any specified value. Q2 is essentially the 
same as Q1 except that averages are taken at points of discontinuity. In Q3, the 



th quantile is the observation numbered closest to , where is the sample 
size. In Q4, the interpolation points divide the sample range into intervals. In 
Q6, the vertices divide the sample into regions, each with probability 
on average. It was proposed by Weibull in 1939, and plots at the mean 
position. Q7 divides the range into intervals, of which exactly lie to the 
left of . Q8 plots at the median position. Q9 is used in quantile-quantile plots. 
If is the normal distribution and is the plotting position of , then is 
an approximately unbiased estimate of .  
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Now to the subroutine:   
From ITMD Section 52: 
 
Call inputs: 
 
&nn,   a constant integer representing the number of data points in the array a 
a         array with nn data points: 
a[0] 
a[1] 
a[2] 
a[3] 
 
 
&ir  the quantile desired. 
 
declares private, or local, arguments:  
 
q = 0.0  
r 
m 
n  number of data points in array; set equal to input nn at start of subroutine 
i 
j 
j1 = 0 
iO = 0, k; 
bool done=false 
bool goto10=true 
 
This subroutine: 
 

1. Presets m to be equal to 0, and n=nn .  When called by dlthx, nn = number of data 
points in array a. 

 
Line 1157: m=0; 
Line 1158: n=nn 
 

2. Defines k to have a range from 0.0 to the value of n, and presets the value of k to 
be equal to ir. 

 
 
Line 1159:  k=mymin(mymax(0,ir),n); 
 

3. Starts a while loop, that continues until done,defined during declaration to be 
equal to a Boolean false, is not equal to true.   



 
Line 1161: while (!done) 
 
 

4. The first of the series of if statements in the while loop states that if (goto10), 
defined during declaration to be equal to a Boolean true, is true, then q is set equal 
to the input a array value at array location a[k], i0 is set equal to m, which on the 
first pass is 0.0, and j1 is set equal to n, which on the first pass has been set equal 
to nn,  the number of data points in the array a.   

 
Line 1163:  if (goto10) 
  { 
   q=a[k]; 
   i0=m; 
   j1=n; 
  } 
 
 
 

5. i is then set to be equal to i0, which on the first pass was set equal to m, which 
was preset to 0.0.   So i starts at 0.0. 

 
Line 1170: i=i0; 
 

6. a while statement is placed inside of the while loop started on line 1161.   This 
statement acts as long as both the value of i is equal or less than n, and the value 
of the a array at location a[i] is equal to or greater than q.  If the while statement is 
true, the value of i is incremented, i.e. increased by 1, on each pass. 

 
Line 1172: while (i<=n && a[i]>=q) 
   i++; 
 

7. The next if statement in the while loop started at line 1161, states that if i is 
greater than n, i is to be set equal to n.  

 
Line 1175: if (i>n) 
   i=n; 
 

8. Then j is set to be equal to j1.  j1 having been preset to 0.0 on the first pass, j is 
then preset to 0.0 on the first pass. 

 
Line 1178:  j=j1; 
 

9. A second while statement is placed inside of the first.  This one acts as long as 
both the value of j is equal or greater than m, which starts at zero, and the value of 



the a array value [j] is equal to or less than q.  If the while statement is true, the 
value of j is negatively incremented, i.e. decreased by 1, on each pass. 

 
Line 1180: while (j>=m && a[j]<=q) 
   j--; 
 

10. The next if statement in the while loop started at line 1161, states that if j is less 
than m, j is set to be equal to m.  On the first pass, m =0, so if j is less than 0, j is 
set to be equal to 0.0.  

 
Line 1183:   if (j<m) 
   j=m; 
 

11. The next if statement in the while loop, states that if i is less than j,  
a. r is set to be equal to the a loop value [i]. 
b. then the a loop value [i] is reset to be equal to the a loop value [j].  
c. then the a loop value [j] is reset to be equal to r. 
d. i0 is reset to be equal to the value of i + 1. 
e. j1 is reset to be equal to the value of j - 1. 
f. goto10 is set to be equal to Boolean false. 

 
Line 1186:  if (i<j) 
  { 
   r=a[i]; 
   a[i]=a[j]; 
   a[j]=r; 
   i0=i+1; 
   j1=j-1; 
   goto10=false; 
  } 
 

12. The if statement at line 1186 is followed by three else if statements. The first of 
these else if statements operates if i is not less than j at line 1186, and i is less than 
k; in that case,   

 
a. the value of the a array value [k] is set to be equal to the value of the a 

array value [i]. 
b. then the a loop value [i] is reset to be equal to the value of  q.  
c. the value of m is reset to be equal to the value of i + 1. 
d. goto10 is set to be equal to Boolean true.       

 
Line 1196:  else if (i<k) 
   { 
    a[k]=a[i]; 
    a[i]=q; 
    m=i+1; 



    goto10=true; 
   } 
 

13. The if statement at line 1186 is followed by three else if statements. The second of 
these else if statements operates if i is not less than j at line 1186, and j is greater 
than k; in that case,   

 
a. the value of the a array value [k] is set to be equal to the value of the a 

array value [j]. 
b. then the a loop value [j] is reset to be equal to the value of  q.  
c. the value of n is reset to be equal to the value of j - 1. 
d. goto10 is set to be equal to Boolean true.       

 
Line 1204:  else if (j>k) 
  { 
   a[k]=a[j]; 
   a[j]=q; 
   n=j-1; 
   goto10=true; 
  } 
 
 

14. The if statement at line 1186 is followed by three else if statements. The third of 
these else if statements operates if i is not less than j at line 1186, i is not less than 
k at line 1196, and j is not greater than k at line 1204; in that case done is set to be 
equal to Boolean true, completing the while loop started at line 1161.   

 
Line 1204: else 
  done=true; 
 

15.  If the while loop is complete, the qtile subroutine reports out the single quantile 
value q. 

 
Line 1216:  return q; 



SUBROUTINE SAALOS: A functional explanation, by Sid Shumate.   
 
Last Revised: 14August,2010 to force saalos to zero if rcvr height above clutter canopy. 
Tuesday August 1, 2010 to add transmitter height input value prop.rch[].   
Reference to itwom 2.0a.cpp 
 
Attenuation due to Clutter Losses, calculated using Shumate’s Approximations in the 
Line of Sight prior to an Obstruction subroutine; saalos. 
 
Note: To be used with both point-to-point and area modes.  Called by alos2.   
 
Calls abq_alos, mymin, and mymax. 
 
Descriptions derived from “Deterministic Equations for Computer Approximation of 
ITU-R P.1546-2” Sid Shumate, presented on June 4, 2008 before the 10th Annual 
International Symposium on Advanced Radio Technologies, held at NIST Boulder Labs, 
June 2-4, 2008; “SA” numbers refer to equations in this document.   ITU-R numbers refer 
to the specified International Telecommunications Union Recommendation.  “Line” 
numbers refer to the ITWOM.cpp as line numbered by Bloodshed Software’s DevC++ 
print function.  
 
 
Background:   Place earth field, a.k.a. ray-tracing, two-ray, and multipath 
calculations. 
 
Plane earth fields calculations, as performed in Longley-Rice, quickly fade out over 
cluttered and/or irregular terrain paths where the receive antenna is at or below the clutter 
line, as the absorption of the clutter and the Snell’s Law transmissivity loss as the signal 
crosses the air-to-clutter-canopy interface, reduces the strength of the ground-reflected 
ray so that its cancellation effect upon arrival at the receiver is no longer significant, 
except for circumstances near the horizon were the main and reflected cluttered paths 
lengths are nearly equal.  
 
 
Reflection coefficient, the PSB and low grazing angles:  
 
“Grazing Behavior of Scatter and Propagation Above Any Rough Surface”, was 
published in January of 1998 in the IEEE Trans. On Antennas and Propagation. The 
author is Dr. Donald Barrick, a radar propagation expert who served from 1972 to 1982 
as Chief of the Sea State Studies Division of NIST’s Wave Propagation Laboratory in 
Boulder, CO.  The conclusions include: 
 

“Our results show that backscattered power depends on grazing angle to 
the fourth power; the impedance and admittance are constant as grazing is 
approached.  These relations hold true for both polarizations, for arbitrary surface 
materials (including perfect conductors), for all frequency/roughness scales, and 



for a single deterministic roughness profile as well as averages over surface 
ensembles. …we considered only backscatter rather than arbitrary bistatic scatter, 
…but the extension to bistatic scatter is obvious: as either the incidence or 
scattering angle alone approaches grazing, echo power decreases as grazing angle 
squared.      

 
Although our approach was primarily employed to establish general 

grazing-limit behavior, our simple angle-independent constants describing 
backscatter and propagation are useful in their own right; these expressions allow 
a single numerical evaluation to serve the entire near-grazing region up to the 
Brewster angle.”  

 
Bistatic radar systems, including passive radar systems, are radar systems where the 
transmitter and receiver are widely separated.  They operate in a like manner to FM and 
TV broadcasting systems with respect to plane wave considerations; therefore, we can 
extend Dr. Barrick’s conclusions to the case of plane wave reflections.   
 
For additional background, see the chapter on “Shumate’s Approximations for the ITU-R 
P.1546-2”. 

 
This is an entirely new subroutine; there is no reference to it in the ITM documentation.      
 
The subroutine function saalos computes the additional attenuation suffered by a radio 
signal on a path traversing a fully or partially cluttered path in the line-of-sight range for 
a total path distance d.  This is an extension of the alos2 subroutine found in ITWOM and 
the ITWOM.cpp.  It computes the path, either a direct line from a transmitter at or below 
an average clutter height level, or for a transmitter above the clutter canopy, a Snell’s 
law-geometry two-ray transmissive path, to a receiver located at or below the level of the 
clutter canopy top.   
 
The computations in this subroutine utilize Shumate’s Approximations; deterministic 
approximation equations derived from ITU-R 1546-2, Figures 1, 9 and 17, to determine 
the Radiative Transfer Engine attenuation from clutter loss and scatter where the receive 
site is below the clutter canopy line, that must be added to two-ray cancellation and free-
space dispersion in the line of sight mode.      
 
TN101 states that, except where noted, all logarithmic functions are to the base 10.   This 
new subroutine continues this convention.  In the text, any reference to log refers to log10, 
a common logarithmic function.   
 
Call inputs:   
double d flat-earth radio path length from transmitter to receiver, or for when called 
by adiff, from obstruction top to receiver. 
prop_type  
& prop  array with constants 
propa_type  



& propa array with constants 
 
defines private, or local, arguments:  
 
double ens  refractive index of atmosphere at surface level (canopy top) 
double encc  refractive index of an average clutter canopy 
double s  sigma, σh(d), the standard deviation of  ∆h 
double n  for loop control value   
double q  utility variable 
double dp  d prime; interim iteration value of d 
double tde  earth curvature correction angle for the actual earth radius, θ∆e
double hc  earth curvature height 
double ucrpc   un-cluttered radio path w/earth curvature correction  
 double ctip  cosine of the flat earth incident angle θi’ (theta i prime) 
double tip  flat earth incident angle θi’ (theta i prime) 
double tic  total incident angle; θic

double stic  sin of the total incident angle, sin(θic)

double ctic  cosine of the total incident angle, cos(θic)

double sta  sin of the transmission angle, sin(θtc)  
double ttc  transmission angle, θtc

double cttc  cosine of the transmission angle, cos(θtc) 
double crpc  cluttered radio path with earth correction 
double ssnps  sin of the Snell’s Law grazing angle, sin(Ψ) 
double d1a  clutter canopy surface distance; d1a
double rsp  reflectivity for the selected polarity, RSP
double tsp  transmissivity for the selected polarity, TSP 
double arte  attenuation from Radiative Transfer Engine mode function,  ARTE 
double zi  frequency compensation zero intercept point for RTE I3 mode 
double pd path distance in meters, from prop.dist for line-of-sight, or from 

receive horizon path distance, prop.dl[1], beyond the first 
obstruction. 

Double pdk path distance in kilometers; equal to pd/1000. 
double hone the difference between the actual transmitter antenna radiation 

center height AMSL and the actual receiver site ground height 
AMSL.  

double tvsr transmitter versus receiver height, the difference between the 
actual transmitter antenna radiation center height AMSL and the 
actual receiver antenna radiation center height AMSL. 

double saalosv output value of Shumate’s Approximation attenuation, line of sight 
 
Note:  prop.tgh and prop.tsgh were created to be used as additional inputs in this 
subroutine. 
 
Prop.tgh represents the transmitter antenna height above ground height (HAGL) of either 
the main transmitter in a call from alos2, or the theoretical transmit antenna height in a 
call from adiff2. 



 
Prop.tsgh represents the transmitter site ground height (AMSL) of either the main 
transmitter in a call from alos2, or of an obstruction peak in a call from adiff2. 
 
In this subroutine: 

 
1. An if statement is initiated; if d is equal to zero, then: 

a. Coefficients are preset, and saalosv is set to be equal to zero. 
 

Line (new):  if (d= = 0.0)  
  { 
    tsp=1.0; 
    rsp=0.0; 
    d1a=50.0; 
    saalosv=0.0; 
  } 

 
2. An if else statement follows; if the receive antenna height is equal to or greater 

than the clutter height, then: 
a. saalosv is set to be equal to zero. 

 
Line (new):  if else (prop.hg[1] >prop.cch )  
  { 
   saalosv=0.0; 
  } 

 
3. An else statement follows, so if d is not equal to zero, then: 

 
  

a. pd is set to be equal to d; the input path distance, equal to prop.dist in a 
call from alos, or to prop.dl[1] in a call from adiff.   In units of meters. 

b. pdk is pd in kilometers, set to be equal to pd/1000. 
c. tsp is initialized to 1.0. 
d. rsp is initialized to 0.0. 
e. dla is preset to be equal to pd, the path distance. 
f. hone, here the difference between the transmit antenna height AMSL and 

the receive site ground level AMSL, is set to be equal to the transmit 
antenna height above ground, prop.tgh, and the transmit site ground level 
AMSL, prop.tsgh, less the sum of: (the actual receive antenna height 
AMSL, prop.rch[1] – the receive antenna height above ground level 
prop.hg[1]).  All in meters. 

 
g.  An if statement is initiated; if the transmitter height above ground level 

prop.tgh is greater than the clutter canopy height, prop.cch, then the 
Snell’s Law path geometric parameters must be calculated.  

 



if(prop.tgh>prop.cch) 
{ 

 
To calculate them, we first need to determine the refractivity of the air and 
clutter canopy. 

 
The refractive index of a vacuum is, by definition, the minimum value of ηv = 1.0.  The 
refractive index of air is about 1.0003; of water, about 1.33.  The atmospheric radio 
refractive index η can be computed from N, the radio refractivity:  
 
    η = 1 + N *10-6   [ITU-R P.453-7, (1)]  
 
In ESSA Technical Report ERL 79-ITS 67,(ITS-67), Longley and Rice stated that the 
surface refractivity can vary between 240 to 400 N-Units, and that a commonly used 
value of Ns is 301 N-units.   University of Oklahoma research tests in 2005 using the 
NOAA National Weather Radar phased array test-bed to determine surface refractivity, 
showed that atmospheric refractivity stabilizes near 301 N-units on cold, clear days with 
little wind; dropping to below 240 units during very hot, dry weather, and exceeding 400 
N-units on hot days when the humidity approaches 100%.   
 
In the analysis of ITU-R P.1546-2 data used to derive Shumate’s Approximations, it was 
found that the best deterministic match to over-land data in figures 1, 9 and 17, occurs 
when the average clutter canopy refractivity index ηcc, is:  ηcc = 1.0010.  For 
compatibility with the data input format for Longley-Rice, we have added an input to the 
point_to_point subroutine for the clutter canopy refractivity in N-units, with a preset 
value of: 1,000 N-units (equal to ηcc = 1.0010). 
 
Therefore, we can calculate the refractivity of the atmosphere at or near ground level, ηs 
(ens) and the average refractivity of the clutter canopy, ηcc (encc). 

 
(1) ens = 1 + prop.ens*10-6   
(2)  encc = 1 + prop.encc*10-6 

 
We now proceed to calculate, by iteration to the accuracy required, the Snell’s Law bent-
path geometry for a radio path from a transmitter above the canopy and a receiver at or 
below the clutter canopy; 

h. dp is set to be equal to d, which is equal to the path distance between the 
transmitter site considered and the receiver, in meters: 

   
dp=d 
 

i. n is set to 5; then a for loop statement is initiated; for n>0; 
 
Step 1: calculate the earth curvature correction angle for the actual earth radius, θ∆e: 
 θ∆e = d/r, as:  

tde=dp/6378137 



 
where: dp represents the radio path length (the flat-earth path length is equal to 

the curved-earth path length) from transmitter site under consideration (may be a 
secondary site atop obstruction) to receiver site.   
  r is the actual earth radius:  6,378,137 meters. 
 
Step 2: calculate the earth curvature adjustment height; hc: hc = (CH + r)(1 – cos(θ∆e)): 
  
 where: CH (prop.cch) is the average clutter canopy height above ground level  
 
   hc=(prop.cch+6378137)*(1– cos(tde)) 
 
 
Step 4: calculate the un-cluttered radio path w/earth curvature correction; ucrpc:        
ucrpc =  [(h1 –h2–hg2 –CH + hc)2  + (dp) 2 ]1/2, where h1 and h2 are the respective 
transmitter and receiver antenna heights above mean sea level (RCAMSL), and hg2 is the 
receive antenna height above ground level.  Here, hone has been set to be equal to the 
height of the transmitter site antenna above the receive site ground level, i.e.  hone = (h1–
h2–hg2), where h1 is obtained by adding the transmitter (or secondary transmitter) 
transmitter radiation center above ground, tgh, to the transmitter site ground level height 
AMSL, tsgl. 
 
Note that in the first for loop cycle, the value of d prime, dp, (which represents the 
ground distance covered by the uncluttered radio path with earth curvature correction, 
ucrpc),  is set to equal the full length of the distance between the transmitter and the 
receiver.  At the end of the for loop, dp is then reduced by the value of the ground 
distance for the cluttered path that is calculated, (recalculated as the path distance less the 
ground distance, d1a, or d1a, for the cluttered path), and the process repeats until the value 
of dp stabilizes.  
 
         ucrpc =  sqrt((hone–prop.cch+hc)* (hone–prop.cch+hc)+(dp*dp)) 
 
Step 5: calculate the cosine of the  angle between the ray leaving the transmitter and 
vertical; the transmitter incident prime angle; cos(θi’): cos(θi’) =  (h1 – CH + hc)/ucrpc 
as: 
   ctip=(hone–cch+hc)/ucrpc   
    
Step 6: calculate the transmitter incident prime angle θi’:  θi’  = arccos[(h1 – CH + 
hc)/ucrpc] as: 
 
   tip=acos(ctip) 
 
 
Step 7:  The total incident angle with earth curvature correction can be calculated from: 
 
  ( π - θic) = (π/2 - θi’) + (π/2 - θ∆e) 



 
which simplifies to: θic = θi’ + θ∆e ,  which is used to calculate the total incident angle 
θic as : 
 
   tic=tip+tde 
 
if in the first line-of-sight range, θic is reduced by the value of θra , the average ground 
height receive approach angle calculated in qlrpfl: 
 
   if(d==prop.dist) 
   { 
    tic-=prop.thera; 
   } 
 
 
    
 
And then limited to be no less than zero: 
 

tic=mymax(0.0,tic); 
 
 
Step 8: calculate the sin of the total incident angle;   sin(θic) = sin(θi’ + θ∆e), as: 
 
   stic=sin(tic) 
 
Step 9: calculate the sin of the transmission angle, θtc , using Snell’s Law:    sin θtc = 
(ηs /ηcc )( sin(θic), as: 
   sta=(ens/encc)*stic    
 
Step 10: calculate θtc : θtc =  arcsin [(ηs /ηcc )( sin(θic)], as:    
 
   ttc=asin(sta) 
 
Step 11: calculate cos θtc:   cos(θtc) =  [1 – sin2(θtc)]1/2, as: 
 
   cttc=sqrt(1-(sin(ttc))*(sin(ttc)) 
 
Step 12:  calculate the length of the cluttered radio path with earth correction, in meters; 
crpc:   
crpc = (CH – h2)/ cos(θtc), as: 
    crpc=(prop.cch-prop.hg[1])/cttc 
 
Here we insert an if statement to limit overcalculation of the cluttered radio path when 
the transmitter is near the top of the clutter canopy, and the path distance is short.  This 



limits the cluttered radio path to be slightly less than the length of the path between the 
transmitter and antenna site.  
 
 If (crpc>=dp) 
 { 
  crpc=dp-1/dp; 
 } 
 
 
 
 
Step 13: calculate the sin of the Snell’s Law grazing angle Ψ;  sin Ψ = (π/2 - θic), as: 
 
    ssnps=(PI/2)-tic 
 
Step 14:  calculate the clutter canopy surface distance; d1a:  d1a = crpc(sin(θtc))/( 1 - 1/r), 
in meters, as: 
    d1a = (crpc*sin(ttc))/(1-1/6378137) 
    
Step 15: Using a for loop, repeat steps 1 to 14 using a new d’ = d (actual value) - d1a   
until the required accuracy is obtained; for spreadsheet or computer calculation, a 
minimum of three iterations are adequate. The preset of n= can be increased for higher 
accuracy. 
 
Line (new)    dp=dp-d1a; 
 
Step 16: calculate the cosine of the total incident angle;  cos(θic) = cos(θi’ + θ∆e), as: 
 
   ctic=cos(tic); 
 

a. The next step in preparing coefficients for the calculation is to determine the 
Reflection, R, and Transmissive, T, coefficients for the antenna polarity being 
used, at the interface point between the air and the clutter canopy top.  This 
interface acts as a signal splitter; R represents the ratio, as 0 (none) to 1.00 
(100%), of the signal that reflects back off of the top of the clutter canopy.  T 
represents the ratio of the signal that passes into, or transmits into, the clutter 
layer.  Newton’s Law of Conservation of Energy applies, so T = 1- R.  The 
equations for the reflection coefficient, R, are different for horizontal and vertical 
polarization.  We compute the coefficients using:  

 
RH =  [( ηs cos(θi ) - ηcc cos(θt ))/(( ηs cos(θi ) + ηcc cos(θt ))]2

 RV = [( ηs cos(θt ) - ηcc cos(θi ))/(( ηs cos(θt ) + ηcc cos(θi ))]2 

 RCP= (RH + RV)/2 
 TH = 1- RH  

TV = 1- RV
 TCP= 1- RCP



 
Selected using ptx, the polarity of the transmitted signal; 0 (or default) for 
horizontal, 1 for vertical, and (new) 2 for circular.  The else statements 
make horizontal polarity the default mode if 1 or 2 are not selected to 
denote vertical or circular polarity. The code takes the following form: 
 
if (prop.ptx= =1) 
{ 
q=((ens*cttc–encc* ctic)/(ens*cttc+encc* ctic)) 
rsp=q*q 
tsp=1-rsp 
} 
 
else 
{ 

if (prop.ptx= =2) 
{ 
q=((ens*ctic–encc*cttc)/(ens*ctic+encc*cttc)) 
rsp=((ens*cttc–encc* ctic)/(ens*cttc+encc* ctic)) 
rsp=(q*q+rsp*rsp)/2 
tsp=1-rsp 
} 
else 
{ 
q=((ens*ctic–encc*cttc)/(ens*ctic+encc*cttc)) 
rsp=q*q 
tsp=1-rsp 
} 

 } 
b. Here we set tvsr to be equal to the difference between the transmitter antenna 

height and the receive antenna height by subtracting the receive antenna height 
from the value of hone. 

 
tvsr=hone-prop.hg[1]; 

   
c. For a transmitter above the canopy, shooting to a receiver at or below the canopy 

top, the attenuation to be added to free space dispersion and two –ray multipath 
cancellation in the line-of-sight mode is determined by one of four sub-modes of 
the Radiative Transfer Engine: Iri, Id (which includes two sub-modes, I1 and I2), 
and I3.  

 
If the canopy-top distance, equal to the under-canopy top ground distance 
d1a is less than or equal to 50 meters, then the Iri mode (Beer’s Law direct 
absorption to RTE function transition) controls the results.   If d1a is 
greater than 50 meters, and less than or equal to 225 meters, then the 
combined Id mode (I1 and I2) controls the results.  If d1a is greater than 225 



meters, and if the combined incident angle θic is equal to or less than 
1.5775 radians, then the I3 mode controls the results to the first 
obstruction, or, if the path is over smooth or slightly irregular terrain, out 
to the transition point to the past-horizon diffraction mode.  We use a 
series of if statements to implement these break points and enable the 
performance of the appropriate computation from Shumate’s 
Approximations (see chapter on Shumate’s Approximations for a full 
description of the equations): 
 
 

     if (d1a<50.0)  
    { 

arte=0.0195*crpc –20*log10(tsp)   
                 } 

     else 
                 { 

if (d1a<225.0) 
   { 

          if (tvsr>1000.0) 
            { 
    q=d1a*(.03*exp(-.14*pdk) 
   } 

else   
   { 

       q=d1a*(.07*exp(-.17*pdk) 
   }      

arte=q+(0.7*pdk-mymax(0.01,log10(prop.wn*47.7) -
2))*(prop.hg[1]/hone);  

  }         
else 

  {  
    q=0.00055*pdk+log10(pdk)*(0.041–0.0017*sqrt(hone)+0.019); 

   arte=d1a*q-(18*log10(rsp))/(exp(hone/37.5); 
            zi=1.5*sqrt(hone-prop.cch); 
} 
if ((pdk>zi) 
{ 

   q=(pdk-zi)*10.2*((sqrt(mymax(0.01,log10(prop.wn*47.7)-
2.0)))/(100-zi)); 
  }   
  else  
  {  
        q=((zi – pdk)/zi)*(-20.0*mymax(0.01,log10(prop.wn*47.7)-
2.0))/sqrt(hone);  
  }  
  arte=arte+q; 



} 
       } 
} 
 
  

d. If the transmit antenna height above receiver antenna height (hone) is at or below 
the clutter canopy, then an else statement launches the computation of the 
combined function equations that are valid only for h1 < CH, for the RTE Iri and Id 
modes.   

The (CAB + CAB2) terms serve as the intercept point and slope times 
distance terms of the Iri, straight-line equation.  With the addition of a 
exponential term to fade out the CAB2 term contribution as it is undercut by 
the lesser attenuation of the Id equation, the Iri terms can then be simply 
added to the Id logarithmic function, along with the same frequency and 
height compensation used for Id functions above the canopy line. 

  
ARTE-ABC  = CAB + CAB2 + 1.34795*20log(d1 +1) dB,    
where:  

CAB  = (CH - h1)(2.06943 -1.56184exp(CH - h1)-1) dB/meter   
and: 

CAB2 = (17.98 – .84224(CH-h1))e-0.00061(d1)     
  where d1, CH and h1 are in meters.     
 

And the frequency and height compensation is:  
FCId= – (log(f)-2)(h2/h1) 

Where the heights are relative to the ground height below the clutter, and h2/h1 is the ratio 
of the receive height AGL to the transmitter height AGL.   The frequency and height 
compensation takes the form: 
 

else 
{ 
q=(prop.cch – prop.tgh)*(2.06943 -1.56184*exp(1/prop.cch –prop.tgh))  
q=q+(17.98 – 0.84224*(prop.cch-prop.tgh))*exp(-0.00061*pd)  

 arte=q+1.34795*20*log10(pd +1)  
arte=arte– ((log10(prop.wn*47.7)-2)*(prop.hg[1]/prop.tgh) 

       } 
  
lastly, the output of the full line-of-sight RTE results is readied: 
 saalosv=arte  

} 
 return saalosv 
} 
 
Combined, the c++ code is: 
 
double saalos(double d, prop_type &prop, propa_type &propa) 



{ 
double ens, encc, s, n, q, dp, tde, hc, dx, ucrpc, ctip, tip, tic, stic, ctic, sta, 
double ttc, cttc, crpc, ssnps, d1a, rsp, tsp, arte, zi, pd, pdk, hone;  
double saalosv;  

 
 q=0.0; 

  if (d== 0.0)  
 { 
  tsp=1.0; 
  rsp=1.0; 
  saalosv=0.0; 
 } 

else 
{ 

pd=d; 
pdk=pd/1000.0; 
tsp=1.0; 
rsp=0.0; 
dla=pd;  
 
if(prop.tgh>prop.cch) 
{ 

ens=1+prop.ens*0.000001;   
encc=1+prop.encc*0.000001; 
dp=pd; 

 
for (int j=0; j<5; ++j)  

        { 
tde=dp/6378137; 

    hc=(prop.cch+6378137)*(1– cos(tde)); 
    dx=(prop.cch+6378137)*sin(tde); 
    hone=prop.tgh+prop.tsgh-prop.rch[1]; 

ucrpc=sqrt((hone–prop.cch+hc)*(hone–
prop.cch+hc)+(dx*dx)); 

    ctip=(hone–cch+hc)/ucrpc;   
    tip=acos(ctip); 
    tic=tip+tde; 
 
    if(d==prop.dist) 
    { 
     tic-=prop.thera; 
    } 
 
    tic=mymax(0.0,tic); 
    stic=sin(tic); 
    sta=(ens/encc)*stic;    



    ttc=asin(sta); 
    cttc=sqrt(1-(sin(ttc))*(sin(ttc))); 
    crpc=(prop.cch-prop.hg[1])/cttc; 
    ssnps=(3.1415926535897/2)-tic; 
    d1a=crpc*sin(ttc))/(1-1/6378137); 
    dp=dp-dia; 
         }  
 

ctic=acos(tic); 
    

if (prop.ptx>=1) /* polarity ptx is vertical or circular */ 
{ 

q=((ens*cttc-encc*ctic)/(ens*cttc+encc*ctic)); 
rsp=q*q; 
tsp=1-rsp; 

 
if (prop.ptx==2)  /* polarity is circular */  
{ 

q=((ens*ctic–encc* cttc)/(ens*ctic+encc* cttc)); 
rsp=((ens*cttc-encc*ctic)/(ens*cttc+encc*ctic)); 
rsp=(q*q+rsp*rsp)/2; 
tsp=1-rsp; 

} 
   } 

else  /* ptx is 0, horizontal, or undefined */ 
{ 

q=((ens*ctic–encc*cttc)/(ens*ctic+encc*cttc)); 
rsp=q*q; 

 
tsp=1-rsp; 

} 
 
  hone=prop.hg[1]; 
 
  if (d1a<50.0)  
      { 

arte=0.0195*crpc –20*log10(tsp);   
} 
else 
{ 

if (d1a<225) 
    { 

             
if (hone>1000) 

             { 
    q=d1a*(.03*exp(-.14*pdk); 



   } 
   else   
   { 

 q=d1a*(.07*exp(-.17*pdk); 
   }      

         arte=q–((log10(prop.wn*47.7)-2)*(prop.hg[1]/hone);  
} 
else 

  { 
q=0.00055*pdk+log10(pdk)*(0.041–0.0017*sqrt(hone)+0.019); 

   arte=d1a*q-(18*log10(rsp))/(exp(hone/37.5)); 
            zi=1.5*sqrt(hone-prop.cch); 

        
if (pdk>zi) 
{ 

   q=(pdk-zi)*10.2*((sqrt(mymax(0.01, log10(prop.wn*47.7)-
2.0)))/(100-zi)); 
   }  

else  
   { 
                 q=(zi-pdk)/zi)*(-20*mymax(0.01,log10(prop.wn*47.7)-
2.0))/sqrt(hone);  
   }  
   arte=arte+q; 

     } 
      } 
     } 
     else 
    {  
     q=(prop.cch – hone)*(2.06943 −1.56184*exp(1/prop.cch – hone));  
     q=q+(17.98 – 0.84224*(prop.cch-hone))*exp(-0.00061*pd);  

             arte=q+1.34795*20*log10(pd +1); 
     arte=arte–((log10(prop.wn*47.7)-2)*(prop.hg[1]/hone)); 

          } 
      saalosv=arte;  
     } 
   propa.test0=saalosv; 
   return saalosv; 
} 
 
 
 



SUBROUTINE ZLSQ1: A functional explanation, by Sid Shumate.   
Last Revised January 27, 2009. 
 
Z1SQ1   Subroutine;    
The Linear Least Squares Fit between X1, X2 to the function described by Z--.   
 
 
Note: Used with point-to-point prediction and area prediction modes. 
 
Called by dlthx, while dlthx is being called by qlrpfl , after which qlrpfl may call zlsq1 
directly.  
 
 
Derived from the Irregular Terrain Model description by George Hufford, 2002, (ITMD), 
and subroutine descriptions in Appendix A to “A Guide to the Use of the ITS Irregular 
Terrain Model in the Area Prediction Mode”, 1982, Hufford, Longley & Kissick,  
compared to the ITM.cpp prepared by J. D. McDonald and John Magliacane for 
compilation on unix and linux systems.  “Line” numbers refer to the ITM.cpp as line 
numbered by Bloodshed Software’s DevC++ print function.  “Alg” numbers refer to the 
algorithm formula in “The ITS Irregular Terrain Model, version 1.22, the Algorithm” by 
G. A. Hufford, 1995.  For the background discussion of the Linear Least Squares Fit 
solution, refers to equations in Chapter 15.2 of  “Numerical Recipes in C, Second 
Edition” ©Cambridge University Press. 
 
Background Notes on the Linear Least Squares Fit. 
 
A linear least squares fit subroutine implements a mathematical procedure for finding the 
best-fitting curve to a given set of points by minimizing the sum of the squares of the 
offsets (“the residuals”) of the points from the curve.  The name of this subroutine 
suggests the use of the linear least squares fitting methodology, the simplest and most 
commonly applied form of linear regression.  This methodology provides a solution to 
the problem of finding the best fitting line through a set of points.  In a linear least 
squares fit, vertical least squares fitting proceeds by finding the sum of the squares of the 
vertical (y-axis) deviations of the squares of the deviations of the function values (in this 
case, elevations) from a straight line, along the x-axis from j=0 to j=n.  The square 
deviations from each elevation point are therefore summed and the resulting residual is 
then minimized to find the best-fit line.  When used in a simple mode, to find the best 
fitting straight line through a set of points, the process provides a solution for a, an 
intercept value, and b, the slope value, in the straight line equation y = a +bx .  
 

In Tech Note 101, this equation becomes:  
 

h(x) = h + m(x – x )                                    (5.15a) 
 
Where the h(x) term replaces the y,  h replaces the intercept variable a, and the m 
replaces the b slope variable.    The term (x – x ) refers to the location of the reference 



zero crossing, where x = 0, being relocated to a position at the center, or midpoint, of the 
x path.  
 
For a full description of a set of equations used in the methodology, see Chapter 15.2, 
Fitting Data to a Straight Line, in the book “Numerical Recipes in C, Second Edition” 
©Cambridge University Press (Numerical Recipes).   A weakness of the least squares 
procedure is that it results in outlying points being given disproportionately large 
weighting.   However, if one is dealing with equal-width intervals, and, if we do not 
know the individual measurement errors, we assume that the individual measurement 
error factors are equal, and if we set the x,y zero crossing at the midpoint of the path, i.e. 
use an “x” equidistant path function that causes x to range in value from xi = ((-xa/2)+1) 
to xi = ((xa/2)-1) as the for loop cycles, causing “Sx”=0.0) then, solving for “a” at the 
midpoint of the values of “x” along the x axis (the section of the path considered), the 
formulas specified in 15.2.1 through 15.2.6 of Numerical Recipes simplifies so that “a” is 
equal to Sy, the sum of the “y” axis data point values, (elevation values along the path, 
divided by S, the number of “x” values (the number of intervals, represented by the 
argument  “xa”).  This avoids the need to use the square of the y values in the solution, 
minimizing the disproportionately large weighting of extremely high or low elevation 
values due to the squaring of the values.    
 
The formula to solve for “a”, given the pre-conditions, simplifies to a = Sy/S, i.e.: 
   

a = (sum of elevation values along the path)/(number of intervals)  
 
   This subroutine analyzes a central section of the total path between the tx site and the 
receive site, starting a short distance, set in part 2, below, from the tx site, and ending a 
short distance, set in part 3 below, before the receive site.  This central section of the path 
is referred to below as the “section of the path considered”.  
 
  The “a” term is solved at the point where x = 0, at the midpoint of the path considered, 
and is later adjusted to be the “a” value where x = 0 at the endpoint of the path 
considered.  The terms z[0], the y value at the transmitter site, is then calculated by 
solving  z[0]= y = a +xb where x is at the transmitter site, and then solved for z[n] = y = a 
+xb where x  is at the receive site; the program outputs the values of z[0] and z[n].  
 
In the same way that the “a” solution formula simplifies, the “b” solution formula given 
in 15.2.6 of Numerical Recipes can be simplified.  To provide more detail for “b” than 
we did for “a”: 
 
 b =    S*Sxy – Sx*Sy     =      S*Sxy – Sx*Sy (15.2.6, Numerical Recipes) 
     Delta   S*(Sxx) – (Sx)^2 
 
 Where:  (See 15.2.1 through 15.2.5, Numerical Recipes) 

 
 



Sx simplifies to be = 0.0, as the sum of the negative terms in the x equidistant 
function cancel out the positive terms as x progresses from  - xa/2, through 0, to 
xa/2.  

  
Sxx simplifies to be = (sum of the squares of xi).  This is a non-zero number, as 
the squares of the negative values of the x equidistant function, i.e. the individual 
incremental values of xi^2 from xi = ((–xa/2)+1) to zero, are positive values. 
 
Sxy simplifies to be = (sum of x  times y along the section of the path 
considered).   We will refer to this as: (sum of xi*y).  Here x is the x equidistant 
function values, and y is the elevation values.  Sxy is equal to the value of b at the 
completion of the for loop. 
 

Since S/S = 1, the formula for b then simplifies to: b = Sxy/Sxx, i.e.: 
b = (sum of x*y)/(sum of the squares of x) 
 
As the value of x increments from –x to +x in the for loop.  This solves b, the slope for 
the straight line equation y = a +bx.  However, this is not quite what the subroutine does.   
 
The calculation of a, the intercept point, in z1sq1 directly implements the a = Sy/S 
formula above, using the for loop to sum the y values. But it divides it by xa, the number 
of intervals. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



DdNeeds work…see spring 09 article. 
 
 
 
The step-by-step subroutine analysis follows. 
 
 
From ITMD Sections 45 and 53: 
 
Call inputs: 
z[ ]  a.k.a. z,       z(J+2), J=0,…,en,   Function Values. 
&x1  a.k.a. x1 (x-one) 
&x2  a.k.a. x2      
& z0  a.k.a. z0          = xi, interval length 
& zn  a.k.a. z1, (z-one)  = en,  number of intervals 
 
Array z must have a special format;  

z[0] = en, the number of equally large intervals, 
 z[1] = xi, a.k.a. sigma, the interval length,  
 z(j+2), j=0,….n,  function values. 
 
local declarations: 
 
xn number of intervals 
xa at first, the number of intervals in distance x1 (distance between transmitter site 

and “start point on the path”); later, the path length, in intervals, between the start 
point and the end point on the path considered by the for loop. 

xb at first, the number of intervals in distance x2 (distance between transmitter site 
and “end consideration location”). Later, changed to be the distance from the 
transmitter site to the midpoint of the path considered by the for loop.  

x working variable  
a working variable used to calculate “a”, the intercept variable of formula y = a 

+xb; after for loop ends, contains sum of elevations along the considered section 
of the path. 

b         working variable used to calculate “b”, the slope variable of formula y = a +xb. 
n number of intervals in the section of the path considered in the for loop. 
ja location of for loop consideration along path, counted in intervals from the 

transmitter site. 
jb number of intervals in distance between transmitter site and “end consideration 

location”)  
 
This subroutine, z1sq1 ; 
 

1. Defines xn=z[0], setting xn = the total number of intervals between the transmitter 
site and the receive site, the two terminals. 

 



Line 1117 xn=z[0]; 
 

2. Calculates value for xa by calling FORTRAN_DIM(xl/z[1],0.0) 
 
Note:  The FORTRAN_DIM function receives inputs (&x, &y) 
 And reports out x-y if x is greater than y; otherwise the reported result is 0.0.   

So if xl/z[1] >0.0, xa=xl/z[1]-0.0, if xl/z[1] =<0.0, xa = 0.0. 
 

x1 (x-one) is the distance  between the transmitter site and the start point for 
consideration, in meters. At one point set to be the lesser of 1/10 of the path 
distance or 1/15th of the transmitter HAGL.  z[1] is the length of one interval, so 
x1/z[1] is the number of intervals in x1 between the transmitter site and the start 
point for consideration.  So xa starts out as a “double” argument holding an 
integer value representing the number of terrain data intervals that can fit between 
the transmitter site and the start point of the path considered in the for loop. 

 
Line 1118:  xa=int(FORTRAN_DIM(xl/z[1],0.0)); 

 
3. Calculates value for xb using FORTRAN_DIM function.   

If xn is > x2/z[1], xb=xn-(xn-x2/z[1]), i.e. x2/z[1].  Otherwise, xb =xn-0.0. 
 

x2 is the distance  between the transmitter site  and the end point for 
consideration,  at one point set to be shorter than the total transmit to receive path 
length by the lesser of 1/10 of the path distance or 1/15th of the receive antenna 
HAGL.  z[1] is the length of one interval, so x2/z[1] is the number of intervals in 
x2 between the transmitter site and the end point for consideration. xn is the total 
number of intervals in the path between the transmitter site and the receive site.  
So xb represents the number of intervals between the transmitter site and the end 
point for consideration. 

 
Line 1119: xb=xn-int(FORTRAN_DIM(xn,x2/z[1]));   
 

4. An if statement states that if xb is less than or equal to xa, which indicates that the 
total path is a very short one that causes the start point for consideration to be at 
or past the end point for consideration, then:   

 
a. If xa is greater than 1, the value of xa becomes equal to xa-1, if not, xa = 

0.0.   This reduces the value of xa by 1, unless xa is already 1 or less.  If xa 
is 1 or less, xa is set to be equal to zero. 

b. If xn is greater than (xb+1), i.e. if the total path length (defined in number 
of intervals) is longer than the distance from the transmitter site to the end 
point for consideration plus 1 interval, the value of xb is reset to be equal 
to xn-(xn-(xb+1)), or xb+1,  increasing the value of xb by 1. 

c.  if xn is not greater than (xb+1), i.e. if the total path length is not longer 
than the distance from the transmitter site to the end point for 
consideration plus 1 interval, xb is reset to equal xn-0.0, i.e. = xn, the 



number of intervals in the total path length, effectively setting the end 
point for consideration to be at the receive site. 

 
Line 1123: xa=FORTRAN_DIM(xa,1.0); 
Line 1124: xb=xn-FORTRAN_DIM(xn,xb+1.0); 
 

5. The value of ja is preset to be equal to xa. 
6. The value of jb is preset to be equal to xb. 
7. The value of n is set to be equal to jb-ja, the number of intervals between the start 

point and the end point of path considered by the for loop. 
8. The value of xa is reset to be equal to xb-xa, resetting it to now represent the 

number of intervals between the start point and the end point of path considered 
by the for loop. 

9. The value of x is set to equal –0.5*xa, the negative of half the number of intervals 
in the section of the path for consideration. 

10. The value of xb is increased by the value of x. (In fact, shortens it, as x is a 
negative number).  

11. The value of a is set to be 0.5*(z[ja+2]+z[jb+2] ); this presets a to be equal to  
(the elevation of the start point+the elevation of the end point)/2, or the average of 
the start point and the end point. 

12. The value of b is set to be .5*(z[ja+2]- z[jb+2])*x ; this presets b to be equal to ½ 
of the difference between the elevation of the start point and the elevation of the 
end point, multiplied by x.  The value of x at this point is a negative value, the 
absolute value of which is equal to one half of the distance, measured in intervals, 
between the start point and the end point of the path considered by the for loop. 

 
13. A for loop is started at line 1136, starting at i=2, continuing until argument i is no 

longer < n.  For each pass, i is incremented (increased by one).  The loop then 
continues with:  

a. ++ja   This increments ja so that the incremented value can be 
immediately used.  ja starts at the number of intervals between the 
transmitter site and the start point of the for loop’s consideration of the 
path elevations, and increases by one path interval for each for loop pass, 
so the for loop starts with ja being increased to the value of one interval 
past the start point.    

b. x is increased by 1.  At the beginning of the for loop, x starts at –(xa)/2, or 
minus ½ of the number of intervals in the section of the path considered, 
and has 1 (increment) added to it for each for loop pass, prior to the 
calculation of a and b, which causes it to end up equal to ((xa/2)-1), or 
one-half of the number of increments between the start point and the end 
point of the section of path considered, less one, when the for loop stops 
one increment shy of the end point.  This line generates the values of the x 
function, x = - xa/2 +n+1, incrementing x from –x to x as n progresses 
from 2 to the value of (xa –1).   

c. a is increased by z[ja+2].   z[ja+2] is the elevation of the point being 
considered in this loop; as the for loop continues, this causes a to sum the  



elevation values at each interval between the start and end points (not 
including the start and end points). 

d. b is increased by z[ja+2]*x;  The z[ja+2] term is the elevation of the point 
being considered in this loop; as the for loop continues, and x proceeds in 
value from –1/2 of the path intervals to ½ of the path intervals, this causes 
b to sum the result of the interval elevations along the path multiplied by 
x; the end result is a positive or negative number indicating a weighted 
bias of the sum of the elevations around the midpoint of the path.  A 
negative sum (bias) for b indicates the transmitter end of the path has the 
higher weighted average of elevations, and a positive sum (bias) indicating 
the receiver end of the path has the higher weighted elevation average.   

14. Once the for loop ends, the value of “a” is reset to be equal to a divided by xa.  
The value of a then represents the sum of the elevations at each interval along the 
path length considered, divided by the number of intervals; i.e. the average of the 
elevations along the path considered, and represents the value of “a” in y = a +xb, 
solved for the condition where x is equal to 0.0 at the midpoint of the path 
considered.  “a” will be the same for all points along the path, unless the intercept 
point (where x = 0) is reset.  Which it will be, to the end point of the path 
considered, before solving for z0 and zn 

 
Line 1144: a/=xa; 
 

15.   Now we need to solve for b, the slope of the straight-line formula y = a +xb.     
Here we are dealing with an even number of equal-width intervals; The individual 
measurement errors are expected to be equal, and we also use the “x” equidistant 
function (x ranges in value from = (-xa/2)+1 to (xa/2)-1 as the for loop cycles, 
causing “Sx”=0.0).  As discussed above in (14.) and the introductory section 
“Background on the Linear Least Squares Fit”, in solving for “b”, the slope value, 
the formulas specified in 15.2.1 through 15.2.6 of Numerical Recipes simplifies 
so that “b” is equal to the sum of the “x times y” axis data point values, 
represented by the argument  “b” value at the completion of the for loop), 
multiplied by the number of intervals (xa), and divided by the sum of the squares 
of the x values from the equidistant function along the path considered.  So the 
formula to solve for “b”, given the pre-conditions, should be: 

   
b = (sum of elevation values multiplied by the x equidistant function value) *(N, the 
number of intervals)/(sum of the squares of the x equidistant function values) 

 
The “sum of elevation values multiplied by the x equidistant function value”, is equal 
to the value of b at the completion of the for loop.   
 
The number of intervals, N, is equal to the value of xa. 

  
But the subroutine fails to calculate the sum of the squares of the x equidistant 
function values along the path.  

  



Now here we have a mystery, and perhaps errors in the original coding of the linear least 
squares fit algorithm:   

 
16. At line 1145, the term “b” is “solved” to be equal to b*12.0/((xa*xa+2.0)*xa).   

The argument xa is the number of intervals along the path considered.  The b 
value on the right hand side of the equation is the sum of each individual 
elevation along the path considered, multiplied by the x equidistant function value 
at the elevation point’s increment point.  

 
I believe the 12/((xa*xa+2)*xa) term is incorrect.   
 
The “12” number appears to replace the term “N” in the formula for “b” stated in 
(15.) above.  If so, the b formula could only be correct if N = 12; i.e. if the path 
considered had only a fixed number of intervals = 12. 

 
The term “(xa*xa+2)*xa” appears to be an attempt to replace the Sxx term in the 
b formula, as derived in the introductory section “Background on the Linear Least 
Squares Fit” above.  “(xa*xa+2)*xa” appears to attempt to replace the  Sxx term, 
the (sum of the squares of the x equidistant function values, xi) in the b formula 
from “Numerical Recipes”, by taking the square of the number of intervals, xa, 
adding 2, and multiplying by the number of intervals, to create a sum of the 
squares of the number of intervals.  The “2” appears to have been included to 
compensate for the fact that the for loop starts at i = 2, not i = 0, and increments ja 
and x before the a and b calculations, causing the for loop to ignore the start point 
elevation and the end point elevation of the section of the path considered.  This 
calculation fails, in that the (square of the number of intervals, plus 2), (multiplied 
by the number of intervals), is not the same as, is not equal to, and provides a 
larger calculated value than, the sum of the squares of the sequence of x values 
from the x equidistant function, this sequence of values defined as  xi = - xa/2 
incremented by 1 per elevation increment, up to (xa/2)-1 .   
 
As a result, the value of b is generally understated.  Therefore, there appear to be 
two problems with the subroutine; If N, the number of intervals in the section of 
the path considered, is not equal to 12, b is incorrect; if N =12, the substitute for 
the Sxx term gives a larger value, causing b to be significantly understated.  See 
attached worksheet file for an analysis of the amount understated by length of 
path. 

 
The b value now attempts to represents the b term, or slope, of the straight-line 
formula y = a +b*x where x = 0 at the end point of the path considered in the for 
loop.    
  

17. The value of z0, the y-axis value of the equation line formula y = a +b*x, is 
calculated to be equal to a-(b*xb).  The value of a represents the average of the 
elevations along the path considered. The - (b*xb) term is the slope b times the 



distance xb (in increments) between the transmitter site to the end point of the 
path considered.  z[0] then equals the value of y = a +b*x  at the transmitter site. 
But since the “b” value is understated, as noted above, this value is incorrect. 
The b slope is understated, causing the line between z0 to zn to be “flattened” (to 
approach the a value) from the true value. 

 
18. The value of zn the y-axis value of the equation line formula (y= a +b*x) where x 

is at maximum (receive site) value, is calculated to be  a+(b*(xn-xb)).   
The value of a represents the average of the elevations along the path considered. 
The value of xn represents the number of intervals in the total path length.  The 
value of xb represents the distance, measured in intervals, from the transmitter to 
the end point of the path considered by the  for loop.  So the term b*(xn-xb) term 
is the slope b times the distance (in increments) between the end point of the path 
considered, where x = 0, to the receive site.  z[0] then equals the value of y = a 
+b*x  at the receive site.  But since the “b” value is understated, as noted above, 
this value is incorrect. 

 
   

19. Outputs: 
The start and end y-axis (z) values of the required line: 
 z0 at 0, the transmitter end of the path considered, and   
zn at x[t] =xi*en, or= z[1]*z[2], the receive end of the path considered.    

 
x1 and x2 are two-way arguments, both used as input and restated in the 
output. 

 
 
 
 
How can the calculation errors in b be corrected? By: 
 

a. Add a value-preset local variable, xi=0.0, to the double arguments 
declaration line, at Line 1114. 

 
b. Insert the line:   xi+=(x*x);  after line 1139, ( x+=1.0;) in the for loop.  At the 

completion of the for loop cycles, xi will represent the sum of the squares of 
the xi values, equal to the Sxx term in the b solution formula discussed in the 
“Background Notes on the Linear Least Squares Fit” section above. 

 
c. Replace line 1145, b = b*12.0/((xa*xa+2.0)*xa);  with b =  (b*xa)/xi;   
 



SUBROUTINE Z1SQ2: A functional explanation, by Sid Shumate.   
A 2nd revision of z1sq1 created on Sept. 30, 2008 
Last Modified Oct 18, 2008. 
 
Z1SQ2   Subroutine zlsq2  z-one SQ - two 
    
The Linear Least Squares Fit between X1, X2 to the function described by Z--.   
 
 
Note: Used with point-to-point prediction and area prediction modes. 
 
Called by d1thx, while d1thx is being called by qlrpfl2, after which qlrpfl2 may call 
z1sq2 directly.  
 
 
Derived from the Irregular Terrain Model description by George Hufford, 2002, (ITMD), 
and subroutine descriptions in Appendix A to “A Guide to the Use of the ITS Irregular 
Terrain Model in the Area Prediction Mode”, 1982, Hufford, Longley & Kissick,  
compared to the ITM.cpp prepared by J. D. McDonald and John Magliacane for 
compilation on unix and linux systems.  “Line” numbers refer to the ITM.cpp as line 
numbered by Bloodshed Software’s DevC++ print function.  “Alg” numbers refer to the 
algorithm formula in “The ITS Irregular Terrain Model, version 1.22, the Algorithm” by 
G. A. Hufford, 1995.  The background discussion of the Linear Least Squares Fit solution 
refers to equations in Chapter 15.2 of  “Numerical Recipes in C, Second Edition” 
©Cambridge University Press. 
 
Background Notes on the Linear Least Squares Fit. 
 
A linear least squares fit subroutine implements a mathematical procedure for finding the 
best-fitting curve to a given set of points by minimizing the sum of the squares of the 
offsets (“the residuals”) of the points from the curve.  The name of this subroutine 
suggests the use of the linear least squares fitting methodology, the simplest and most 
commonly applied form of linear regression.  This methodology provides a solution to 
the problem of finding the best fitting line through a set of points.  In a linear least 
squares fit, vertical least squares fitting proceeds by finding the sum of the squares of the 
vertical (y-axis) deviations of the function values (in this case, elevations multiplied by 
the distance in intervals from a midpoint of the path considered) from a straight line, 
along the x-axis from j=0 to j=n.  The deviations from each elevation point are therefore 
summed and the resulting residual is then minimized to find the best-fit line.  When used 
in a simple mode, to find the best fitting straight line through a set of points, the process 
provides a solution for a, an intercept value, and b, the slope value, in the straight-line 
equation y = a + bx.  
 

In Tech Note 101, this equation becomes:  
 

h(x) = h + m(x – x )                                    (5.15a) 



 
Where the h(x) term replaces the y,  h replaces the intercept variable a, and the m 
replaces the b slope variable.    The term (x – x ) refers to the location of the reference 
zero crossing, where x = 0, being relocated to a position at the center, or midpoint, of the 
x path.  
 
For a full description of a set of equations used in the methodology, see Chapter 15.2, 
Fitting Data to a Straight Line, in the book “Numerical Recipes in C, Second Edition” 
©Cambridge University Press (Numerical Recipes).   A weakness of the least squares 
procedure is that it results in outlying points being given disproportionately large 
weighting.   However, if dealing with an even number of equal-width intervals where the 
individual measurement errors are not known, the uncertainty associated with each 
measurement can be set to be equal to 1, and the x,y zero crossing can be set at the 
midpoint of the path.   
 
This uses an “x” equidistant path function that causes x to range in value from xi = ((-
xa/2)+1) to xi = ((xa/2)-1) as the for loop cycles, causing “Sx”=0.0.  By then solving for 
“a” at the midpoint of the values of “x” along the x axis (the section of the path 
considered), the formulas specified in 15.2.1 through 15.2.6 of Numerical Recipes 
simplify from: 
    ∆ = SSxx -  (Sx)2

 
    a = (SSxxSy - SxSxy )/ ∆   (15.2.6)  
 
    b = (SSxy - SxSy )/ ∆    
 
to: 
    ∆ = SSxx  
 
    a = (SSxxSy)/ ∆  = (SSxxSy)/ SSxx  = Sy /S

 

b = (SSxy - SxSy )/ ∆ = (SSxy)/ SSxx = Sxy /Sxx    
 
so that “a” is equal to Sy, the sum of the “y” axis data point values, (elevation values 
along the path), divided by S, the number of “x” values (the number of intervals, 
represented by the argument  “xa”).  This avoids the need to use the square of the y 
values in the solution, minimizing the disproportionately large weighting of extremely 
high or low elevation values due to the squaring of the values.    
 
So the formula to solve for a, now  “h”, given the pre-conditions, simplifies to:  
 

 h  = a = Sy/S, i.e.: 
   

h = a = (sum of elevation values along the path)/(number of intervals)  
 



The intercept value, when located at the center of the path, is equal to the average value 
of the elevation along the path. 
 
   This subroutine analyzes a central section of the total path between the tx site and the 
receive site, starting a short distance, set in part 2, below, from the tx site, and ending a 
short distance, set in part 3 below, before the receive site.  This central section of the path 
is referred to below as the “section of the path considered”.  
 
  The “a” term is solved for a zero intercept at the center of the path considered, such that 
x = 0 at the midpoint of the path considered.  The terms z[0], the y value at the 
transmitter site, is then calculated by solving  z[0]= y = a +xb where x is at the transmitter 
site, and then solved for z[n] = y = a +xb where x  is at the receive site; the program 
outputs the values of z[0] and z[n].  
 
 
Again, Sx simplifies to be = 0.0, as the sum of the negative terms in the x equidistant 
function cancel out the positive terms as x progresses from  - xa/2, through 0, to xa/2.  
Then the “b” solution formula given in 15.2.6 of Numerical Recipes simplifies to: 
 

b = (SSxy - SxSy )/ ∆ = (SSxy)/ SSxx = Sxy /Sxx    
  
Sy simplifies to be =  (sum of the elevation values along the section of the path 
considered).  This term is irrelevant when Sx is equal to zero. 
 
Sxy simplifies to be = (sum of x  times y along the section of the path considered).   We 
will refer to this as: (sum of xi*y).  Here x is the x equidistant function values, and y is 
the elevation values.  Sxy is equal to the value of b at the completion of the for loop. 
 
Sxx simplifies to be = (sum of the squares of xi).  This is a non-zero positive number, as 
the squares of the negative values of the x equidistant function, i.e. the individual 
incremental values of xi^2 from xi = ((–xa/2)+1) to zero, are positive values. 

 
Inserting the rest of the simplified S formulas: 
 
 b  =  Sxy /Sxx  = (sum of xi*y) / (sum of the squares of xi) 
 
Where xi is the value of the x equidistant function, or xi = - xa/2 +(n-2+1), 
 as n progresses in value from 2 to xa-1, and  xi progresses in value  
from (- xa/2)+1 to (xa/2)-1,  in the for loop, where xa is an even integer. 
 
The argument b also includes the values of (xi*y)/(xi*xi) for the endpoints, computed and 
preset before the summation for loop.  
 
This solves b, the slope factor for the straight line equation y = a +bx . 
 



However, this is not what the original subroutine z1sq1 does; this has been corrected for 
the ITWOM version, z1sq2.   
 
 
The step-by-step subroutine analysis follows: 
 
From ITMD Sections 45 and 53: 
 
Call inputs: 
z[ ]  a.k.a. array z,       z(J+2), J=0,…,en,   Function Values. 
 
Array z must have a special format;  

z[0] = en, the number of equally large intervals, 
 z[1] = xi, a.k.a. sigma, the interval length,  
 z(j+2), j=0,….n,  function values. 
 
 
&x1 a.k.a. x1 (x-one) distance in meters, from transmit site to start of path  

considered. 
&x2  a.k.a. x2     distance in meters, from rcvr site to end of considered path. 
 
Outputs: 
 
& z0  a.k.a. z0          = height value of transmit end of line, in meters. 
& zn  a.k.a. z1, (z-one)  = height value of receive end of line, in meters. 
 
local declarations: 
 
xn number of intervals 
xa first the number of intervals in distance x1 (distance between transmitter site and 

“start consideration location”); later, the path length of the portion of the path 
considered by the for loop measured in number of intervals. 

xb number of intervals in distance x2 (distance between transmitter site and “end 
consideration location”)  

x working variable; first represents the value of x at the starting point of the 
intervals considered, that are located between the end points.  

a working variable used to calculate “a”, the intercept variable of formula y = a 
+xb; after for loop ends, contains sum of elevations along the considered section 
of the path. 

b         working variable used to calculate “b”, the slope variable of formula y = a +xb. 
n number of intervals in the section of the path considered in the for loop. 
ja location of for loop consideration along path, counted in intervals from the 

transmitter site. 
jb number of intervals in distance between transmitter site and “end consideration 

location”)  
 



This subroutine, zlsq2 ; 
 

1. Defines xn=z[0], setting xn = the total number of intervals between the transmitter 
site and the receive site, the two terminals. 

 
Line 1117 xn=z[0]; 
 

2. Calculates value for xa, by calling FORTRAN_DIM(xl/z[1],0.0) 
 
Note:  The FORTRAN_DIM function receives inputs (&x, &y) 
 And reports out x-y if x is greater than y; otherwise the reported result is 0.0.   

So if xl/z[1] >0.0, xa=xl/z[1]-0.0, if xl/z[1] =<0.0, xa = 0.0. 
 

x1 (x-one) is the distance  between the transmitter site and the start point for 
consideration, at one point set to be the lesser of 1/10 of the path distance or 1/15th 
of the transmitter HAGL.  The array value z[1] is the length of one interval in 
meters, so x1/z[1] is the number of intervals in x1 between the transmitter site and 
the start point for consideration.  So xa represents the number of intervals between 
the transmitter site and the start point for consideration. 

 
Line 1118:  xa=int(FORTRAN_DIM(xl/z[1],0.0)); 

 
3. Calculates value for xb using FORTRAN_DIM function.   

If xn is > x2/z[1], xb=xn-xn-x2/z[1].  Otherwise, xb =xn-0.0. 
 

The argument x2 is the distance, in meters, between the transmitter site and the 
end point for consideration, in meters.  For one calculation, this is preset in qlrpfl 
to be shorter than the total transmit to receive path length by the lesser of 1/10 of 
the path distance or 1/15th of the receive antenna HAGL.  z[1] is the length of one 
interval in meters, so x2/z[1] is the number of intervals in x2 between the 
transmitter site and the end point for consideration. xn is the total number of 
intervals in the path between the transmitter site and the receive site.  The 
FORTRAN_DIM function provides the number of intervals between the receive 
site and the end point for consideration.  If the distance, in intervals, from the 
transmitter site to the end point for consideration is equal to or greater than the 
total path distance in intervals, the FORTRAN_DIM function result is 0.0. The 
result of the FORTRAN_DIM function is then subtracted from xn, so xb 
represents the number of intervals between the transmitter site and the end point 
for consideration, where the end point may equal, but not exceed, the receive site 
distance. 

 
Line 1119: xb=xn-int(FORTRAN_DIM(xn,x2/z[1]));   
 

4. An if statement states that if xb is less than or equal to xa, which indicates that the 
total path is a very short one that causes the start point for consideration to be at 
or past the end point for consideration, then:   



 
a. If xa is greater than one interval, the value of xa becomes equal to xa-1, if 

not, xa =0.0.   This reduces the value of xa by one interval, unless xa is 
equal to or less than one; if xa is equal to or less than one, xa becomes 0.0. 

b. If xn is greater than (xb+1), i.e. if the total path length (defined in number 
of intervals) is longer than the distance from the transmitter site to the end 
point for consideration plus 1 interval, the value of xb is reset to be equal 
to xn-(xn-(xb+1)), or xb+1,  increasing the value of xb by 1. 

c.  if xn is not greater than (xb+1), i.e. if the total path length is not longer 
than the distance from the transmitter site to the end point for 
consideration plus 1 interval, xb is reset to equal xn, the number of 
intervals in the total path length, effectively setting the end point for 
consideration to be at the receive site. 

 
Line 1123: xa=FORTRAN_DIM(xa,1.0); 
Line 1124: xb=xn-FORTRAN_DIM(xn,xb+1.0); 
 

5. The value of ja is preset to be equal to the integer value of xa. 
6. The value of jb is preset to be equal to the integer value of xb. 
7. The value of xa is reset to be equal to xb-xa, the number of intervals in the section 

of the path for consideration.  xa at this point must also be an integer number and 
an odd number, to provide an even number of intervals below and above a 
midpoint zero crossing.  The end points will be separately considered, so the 
number can be reduced by 2, and the full adjustment is:  xa =-2+1+2*int((xb-
xa)/2), or (2*int((xb-xa)/2))-1.  

 
8. The argument x must be an even integer number, to provide an even number of 

intervals below and above a midpoint zero crossing, resulting in an odd total 
number of terrain points considered, one of which equals zero (x times the 
elevation at x=0). Therefore, the value of x must be an even integer number, so 
that the value of x determined below will be an even integer number of intervals.   
The value of x is set to equal –0.5* (xa+1), the negative integer value of half the 
number of intervals in the section of the path for consideration, plus 1. 

 
9. The value of xb is summed with the value of x, a negative number. The result is 

that xb is shortened, and will now represent the value of the number of intervals 
from the transmitter site to the midpoint of the path to be considered. 

 
10. The value of ja, the distance from the transmitter to the start point of the path 

considered, is reset (increased if necessary) to match jb, the distance from the 
transmitter to the end point of the path considered, less the integer value of  
(xa+1), the number of intervals to be considered between ja and jb, the end 
points, plus one. 

 
 



11.  The value of n is set to be equal to jb-ja, the number of intervals between the end 
points of the section of the path for consideration, since i starts at 2 in the for loop 
and stops when i increases in value to match n. 

 
12.  The value of a is set to be (z[ja+2]+z[jb+2] ); this presets a to be equal to  

the elevation of the start point+the elevation of the end point, taking into 
consideration the start point and the end point. 
 

13. The value of b is set to be (x)(z[ja+2])+(-x)(z[jb+2]); this presets b to be equal to 
the end point elevations times the distance (in intervals) to the midpoint. 

 
14. xi, the sum of the square of the x distances from the midpoint, is preset to be 

equal to square of the x value at each endpoint, equal to two times the square of 
(x), calculated as (x)2 + (x)2. 

  
15. A for loop is started at line 1136, starting at i=2, continuing until i is no longer < 

n.  For each pass, i is incremented (increased by one), and then:  
a. ++ja   This increments ja so that the incremented value can be 

immediately used.  ja starts at the number of intervals between the 
transmitter site and the start point of the for loop’s consideration of the 
path elevations, and increases by one path interval for each for loop pass.    

b. x is increased by 1.  At the beginning of the for loop, x starts at –(xa-1)/2, 
or minus ½ of the number of intervals in the section of the path considered 
less one, and has 1 (increment) added to it for each for loop pass, prior to 
the calculation of a and b, which causes it to end up equal to (xa-1)/2), or 
one-half of the number of increments between the start point and the end 
point of the section of path considered less one, when the for loop stops 
one increment shy of the end point.  This line generates the values of the x 
function, x = x progressing up one interval at a time to –x, as i progresses 
from 2 to the value of n –1. 

c. The argument xi, adds the sum of the squares of the x value for each loop 
to the existing squares of the x value of the endpoints.    

d. a is increased by z[ja+2].   z[ja+2] is the elevation of the point being 
considered in this loop; as the for loop continues, a is increased by the 
elevation of each interval, becoming the sum of the elevations along the 
path considered. 

e. b is increased by z[ja+2]*x;  The z[ja+2] term is the elevation of the point 
being considered in this loop; as the for loop continues, and x proceeds in 
value from –1/2 of the path intervals to ½ of the path intervals, this causes 
b to collect the sum of the interval elevations along the path multiplied by 
x; the end result is a positive or negative number indicating a weighted 
bias of the sum of the elevations around the midpoint of the path, with a 
negative sum (bias) for b indicating the transmitter end of the path has the 
higher weighted average of elevations, and a positive sum (bias) indicating 
the receiver end of the path has the higher weighted elevation average.  
The varying value of x weights the averages toward the beginning and end 



of the path, with the midpoint, where x passes through zero, having no 
effect, as the elevation is multiplied by zero.  

 
16. Once the for loop ends, the value of “a” is reset to be equal to a divided by 

(xa+2), the number of elevation points considered in the for loop, plus the end 
points.  The value of a then represents the sum of the elevations at each interval 
along the path length considered, divided by the number of intervals; i.e. the 
average of the elevations along the path considered, and represents the value of 
“a” in y = a +xb, solved for the condition where x is equal to 0.0 at the midpoint 
of the path considered.  “a” will be the same for all points along the path. 

 
Line 1144: a/=xa; 
 

17.   Now we need to solve for b, the slope of the straight-line formula y = a +xb.     
Here we are dealing with an odd number of equal-width intervals; we do not 
know the individual measurement errors, so we set the individual measurement 
error factor to be equal to 1; and we also use the “x” equidistant function (x 
ranges in value from = (-xa/2)+1 to (xa/2)-1 as the for loop cycles, causing 
“Sx”=0.0).  As discussed above in (14.) and the introductory section “Background 
on the Linear Least Squares Fit”, in solving for “b”, the slope value, the formulas 
specified in 15.2.1 through 15.2.6 of Numerical Recipes simplifies so that “b” is 
equal to the sum of the “x times y” axis data point values, represented by the 
argument  “b” value at the completion of the for loop), divided by the sum of the 
squares of the x values from the equidistant function along the path considered.  
So the formula to solve for “b”, given the pre-conditions, should be: b = b (at 
completion of loop)/xi. 

   
The value of b at the completion of the for loop represents the “sum of elevation 
values multiplied by the x equidistant function value”.  The value of b is then 
reset to equal b, the sum of elevation values multiplied by the x equidistant 
function value, divided by xi, the sum of the squares of the x equidistant function 
values).  The final b value represents the b term, or slope, in meters per interval, 
of the straight-line formula y = a +b*x where x = 0 at the end point of the path 
considered in the for loop.    
  
The value of z0, the y-axis value of the equation line formula y = a +b*x, solved 
at the transmitter site, is calculated to be equal to a-(b*xb).  The value of a 
represents the average of the elevations along the path considered. The - (b*xb) 
term is the slope b times the distance xb (in increments) between the transmitter 
site to the midpoint, where x=0, of the path considered.  z[0] then equals the value 
of y = a +b*x  at the transmitter site. 

 
18. The value of zn the y-axis value of the equation line formula (y= a +b*x) where x 

is at maximum (receive site) value, is calculated to be  a+(b*(xn-xb)).   The value 
of a represents the average of the elevations along the path considered. The value 
of xn represents the number of intervals in the total path length.  The value of xb 



represents the distance, measured in intervals, from the transmitter to the mid 
point of the path considered by the  for loop.  So the term b*(xn-xb) term is the 
slope b times the distance (in increments) between the mid point of the path 
considered, where x = 0, to the receive site.  z[0] then equals the value of y = a 
+b*x  at the receive site.   
   

19. Output lines: 
The start and end y-axis (z) values of the required line: 
 z0 at 0, the transmitter site   
zn at path.dist, the receive site  

 
x1 and x2 are two-way, or pass-through arguments, used as inputs.  
 

Line:   z0 = a-b*xb; 
  Zn = a+b*(xn-xb); 

} 
 



 

Section II:   
 
A subroutine-by-subroutine analysis: 
 
 
The following chapters discuss the Longley Rice Irregular Terrain Model (ITM) 
implementation in the c++ source code file ITMDLL.cpp.  After discussing the utilities 
built into the ITM, the Point-to-Point mode use of the ITM is described in a linear 
fashion, subroutine by subroutine, as the subroutines are first called.  The Area mode, 
now far less utilized, is then briefly described. The last part of this section describes the 
changes found in the updated Version 7 of the ITMDLL.cpp, made available on the 
NTIA website on June 29, 2007. 
  
The following chapters make reference to the equations and descriptions in the following 
prior documentation, reports, and constructs: 
 
The Irregular Terrain Model description by George Hufford, 2002, (ITMD).  The 
numbers of the sections of the ITMD that apply to each subroutine, are specified near the 
beginning of each chapter. 
 
 “Alg” numbers refer to the algorithm equations found in “The ITS Irregular Terrain 
Model, version 1.22, the Algorithm” by G. A. Hufford, 1995.  
 
 “ITS67” numbers refer to the algorithm equations in “ESSA Technical Report ERL 79-
ITS 67, Prediction of Tropospheric Radio Transmission Over Irregular Terrain, A 
Computer Method – 1968” by A.G.Longley and P.L.Rice. 
 
“TN101” numbers refer to the algorithm equations in Tech Note 101, Volume I and 
Volume II; “Transmission Loss Predictions for Tropospheric Communications Circuits” 
revised January 1, 1967, by P. L. Rice, A. G. Longley, K. A. Norton, and A. P. Barsis.  
 
“Line” numbers refer to the ITMDLL.cpp as line numbered by Bloodshed Software’s 
DevC++ Integrated Development Environment print function. 
 
Reference is also often made to:  
 
NTIA Report TR-82-100, “A Guide to the Use of the ITS Irregular Terrain Model in the 
Area Prediction Mode” (NTIA TR-82-100), April 1982, by G.A. Hufford, A.G. Longley, 
and W. A. Kissick. 
 
“A manual for ITM, “Irregular Terrain Model”, released by the NTIA as itm_man.txt, 
(ITM Manual).  



 
Chapter 4: Utilities in the ITM:  

Mymin, Mymax, FORTRAN_DIM, Abq_alos,  
and Deg2rad: 
 
 

This chapter includes explanations for the following specialized short utility subroutines 
found in the Irregular Terrain Model:  
 
int mymin 
int mymax 
double mymin 
double mymax 
FORTRAN_DIM 
abq alos 
deg2rad 
 
 
 
int mymin 
 
Subroutine int mymin  (my minimum) reports out the lowest value of two integer inputs i 
and j.  
 
Call inputs:  

const int &I, and  const int &j 
 
In this subroutine: 

1. An if statement is initiated.  If i is less than j, subroutine mymin returns i. 
 
Line 72: if (i<j) 
   return i; 
 

2.  
 An else statement follows, so if j is less than or equal to i, subroutine mymin 
returns j. 
  
Line 74: else 
   return j; 

 
 

 
int mymax 
 



Subroutine int mymax  (my maximum) reports out the highest value of two integer inputs 
i and j.  
 
Call inputs:  

const int &I, and  const int &j 
 
In this subroutine: 

1. An if statement is initiated.  If i is greater than j, subroutine mymax returns i. 
 
Line 79: if (i>j) 
   return i; 
  

2.  An else statement follows, so if i is less than or equal to j, subroutine mymax 
returns j. 

  
Line 81: else 
   return j; 
 
 
double mymin 
 
Subroutine double mymin  (my minimum) reports out the lowest value of two double 
precision inputs a and b.  
 
Call inputs:  

const double &a, and  const double &b 
 
In this subroutine: 

1. An if statement is initiated.  If a is less than b, subroutine mymin returns a. 
 
Line 86:  if (a<b) 

  return a; 
  

2. An else statement follows, so if a is greater than or equal to b, subroutine mymin 
returns b. 

  
Line 88: else 
   return b; 

 
 

double mymax 
 
Subroutine double mymax  (my maximum) reports out the highest value of two double 
precision inputs a and b.  
 
Call inputs:  



const double &a, and const double &b 
 
In this subroutine: 
 

1. An if statement is initiated.  If a is greater than b, subroutine mymax returns a. 
 
Line 86:  if (a>b) 

  return a; 
  

2. An else statement follows, so if a is less than or equal to b, subroutine mymax 
returns b. 

  
Line 88: else 
   return b; 
 
 
FORTRAN_DIM( ) 
 
Subroutine double FORTRAN_DIM performs the FORTRAN DIMension function in a 
c++ environment; it will report out  (x – y), if x is greater than y.   If x is less than or 
equal to y, it will report out 0.0. 
  
Call inputs:  

const double &x, and const double &y 
 
In this subroutine: 
 

1. An if statement is initiated.  If x is greater than y, subroutine FORTRAN_DIM 
returns  x – y. 

 
Line 102: if (x>y) 
   return x-y; 
  

2. An else statement follows, so if x is less than or equal to y, subroutine 
FORTRAN_DIM returns 0.0. 

  
Line 104: else 
   return 0.0; 
 
 
abq alos 
 
 
Subroutine double abq_alos is called by subroutine alos.  
 
Call inputs:  



complex<double> r  
 
In this subroutine: 

 
Subroutine abq_alos returns the value of: r.real()*r.real()+r.imag()*r.imag(), the 
sum of the square of the real component value, summed with the square of the 
imaginary component value, of the complex argument r.  

 
Line 307: return r.real()*r.real()+r.imag()*r.imag(); 
 
 
deg2rad 
 
Subroutine double deg2rad converts the value of an angle from units of degrees to units 
of radians (rad).  
 
Call inputs:  

double d   value of an angle in units of degrees 
 
In this subroutine: 

 
There are 2 ∗π radians in a circle of 360 degrees.   Subroutine deg2rad returns the 

value of: d (in degrees)*2π/360, in radians/degrees.  Output units are in radians (rad). 
 
Line 307: return d*3.1415926535897/180.0; 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

In the Point-to-Point Mode: 
 

Chapter 5:  Point-to-Point  
 
Longley-Rice Point-to-Point Profile 
 
Note: This is the primary subroutine called by the commercial, freeware, or custom wrap-
around software for point-to-point calculations. In version 7.0 of the ITMDLL.cpp, 
released in June of 2007, there are two alternative subroutines, point_to_pointDH and 
point_to_pointMDH, that provide improvements.   This subroutine initiates the point-to-
point mode calculation of signal loss between two points, or terminals, over a single 
irregular terrain path profile.   The two terminals are the transmit terminal, normally the 
transmitting antenna; and the receive terminal, normally the receiving antenna or 
location.  The subroutine reports out a single value of loss, aref, the “reference 
attenuation” in decibels (dB), of the radio signal between the two terminals. Calls qlrps, 
qlrpfl, and then lrprop, and then calls avar to calculate additional loss due to statistical 
variation before reporting out errnum, the error code, and dbloss, (a.k.a. aref, the 
reference attenuation) the path loss.   
 
Special references for this Chapter include: documentation for SPLAT!, an RF Signal 
Propagation, Loss and Terrain analysis tool. 
 
From ITMD Sections: 4 and 5. 
 
Call inputs: 
 
The inputs to this subroutine were originally prepared and placed on IBM punch cares for 
input into a 1970’s mainframe computer that used the 1966, and, later, 1977 ANSI 
standard version of the FORTRAN computer language.   Today, for this c++ code, the 
user must provide either a commercially written version (ComStudy, PROBE, RFCAD, 
and TAP being examples), a freeware version (NTIA’s ITMsetup.exe, Radio Mobile, 
SPLAT, or my own SPLAT with PLOP), or write their own wrap-around input and 
output processing software, to collect and process the following input data for the 
point_to_point subroutine.  If you wish to “roll your own”, as a learning tool or as a basis 
to build on under the GNU GPL license, the full source code for the wrap around 
software is only freely available for SPLAT and SPLAT with PLOP; both of these are 
Linux command line programs.   
 
This data comes from a combination of direct data input from the program user, from 
standard preset value tables, and from a terrain elevation database [such as GLOBE, the 
USGS National Elevation Database (NED) or the data from the Shuttle Radar Terrain 
Mission (SRTM)].  At this time, only SPLAT with PLOP provides the option of using a 



combination of two of the databases, one as a ground height database (NED) and one as a 
radio signal reflection height database (SRTM).  
 
elev[ ]   a.k.a. pfl, or array pfl, prepared for use in either version 1.2.2. or version 

7.0 of  the ITM compilied from source code written in c++.  As this array 
is primarily referred to in other parts of the ITM, and in the NTIA  
documentation, as the pfl array, so will we.  This array of elevation values 
is prepared by the calling program or subroutine.  This array contains the 
values of terrain elevation heights (in meters), equally spaced along a path 
starting at the transmit terminal, and ending at the receive terminal, and 
following great circle path, with: 
pfl[0] = enp, the number of increments between elevation data 

points, (also one less that the number of data points) 
pfl[1] =  xi, distance per increment, (i.e. distance between elevation 

height data points) in meters  
pfl[2] =  z(0), the transmitter tower base AMSL, or elevation height 

in meters. 
pfl[[np+2] =  z(np), the receive location AMSL, the last elevation height in meters. 
 
Tht_m a.k.a. hg (0); transmitter antenna center of radiation height in meters, 

above ground level (RCAGL). 
    
Rht_m a.k.a. hg(1); receive antenna center of reception height in meters, above 

ground level (RCAGL). 
 
Note: tht_m and rht_m also referred to in the documentation collectively as HG, heights 
above ground.  
 
Eps_dielect  Earth’s dielectric constant, a.k..a eps; relative permittivity.   

Customary default setting: 15.000  
Typical values:  

   Salt water  80 
Fresh water  80 
Good ground  25 
Farmland, forest 15 
Average ground 15 
Mountain, sand 13 
Marshy land  12 
City     5 
Poor Ground    4 

 
Sgm_conductivity Earth’s conductivity; a.k.a. sgm.  

Customary default setting: 0.005 Siemens per meter  
Typical values:  

   Salt water  5.000 
Good ground  0.020 



Fresh water  0.010 
Marshy land  0.007 
Farmland, forest 0.005 
Average ground 0.005 
Mountain, sand 0.002 
City   0.001 
Poor Ground  0.001 

 
Eno_ns_surfref Atmospheric bending constant, (eno); eno varies with elevation 

above ground; here it is set to equal ens, the refractivity of the 
atmosphere as it approaches the surface of the earth. 

 Customary Default setting: ens = 301.000 N-units (parts per 
million).  

 
Frq_mhz Frequency of the transmitter in MHz, Range: 20 to 20000 MHz. 
 
klim,  or Radio_climate the radio climate code; set by the user or obtained from a 

preset list.  Customary Default value is 5.  The climate 
codes are: 

1. Equatorial; (Africa, along the equator) 2. Continental Subtropical; 
(Sudan region) 3. Subtropical (a.k.a. Maritime Subtropical (West Coast of 
Africa); 4. Desert (Death Valley, NV; Sahara); 5  Continental Temperate 
(usual general U.S. default); 6. Maritime Temperate Over Land (California 
to State of Washington; West Coast of Europe including U.K.), 7. 
Maritime Temperate, Over Sea. 

 
pol polarity of the transmitted signal and receive antenna: 

1. Horizontal; used primarily for television broadcast and FM home 
reception. 

2. Vertical: used for FM automotive, cellular automotive, and other 2-
way vehicular and handheld tranceivers with vertical whip antennas.   

 
conf confidence; a statistical percentage of confidence in the situation; set as  

.01 to .99 .  In avar, the definition of confidence varies with the value of 
mdvar, the mode of variability; for mdvar = 0, for example, time, location, 
and situation variability are combined together.  For point_to_point mode, 
mdvar = -1.  See step 18 below, or the chapter on subroutine avar, or 
itm.man.   Usual default setting; 0.50 ( 50%) (Note: often used instead of 
location calculation, i.e. to approximate 50% of locations; however, avar  
has separate inputs for confidence and location, and point_to_point calls 
avar to calculate the reference attenuation with the location variable set at 
0.0. See note at input loc below regarding optional subroutine 
point_to_pointMDH.) 

 
rel reliability; a statistical percentage of combined time and location 

availability; set as  .01 to .99.  Usual default setting; for NTSC (analog) 



TV, FM broadcast and most FM analog transmissions, set to 0.50 (50% 
for FCC 50,50); for Digital FM IBOC sidebands, set to .90 or .98, or for 
television (DTV), set to 0.97 (97% for FCC 50, 97).  Note: Caution 
required if using any setting other than .50 (50%) in point_to_point; may 
require reset of mdvar constant to 3 in the source code, and recompilation, 
to work properly.  See documentation below.   

 
NOTE: loc, immediately below, is a new option for point-to-point use; see optional 

alternative subroutine point_to_pointMDH released in ITMDLL.cpp 
version 7.0, June 2007.   

 
loc location, a statistical percentage of location availability; set as .01 to .99.  

Internally fixed to zero in point_to_point; as point_to_point calls 
subroutine avar with the location variable set at 0.0.   In the new version 7, 
the optional alternative subroutine point_to_pointMDH allows this to be 
set by the user.  Usual user default setting; 0.50 (50%)  for 50% of 
locations.  Disabled in subroutine point_to_point as long as mdvar 
remains set to 12 (point-to-point, mobile modes) in the source code.   
Requires reset of mdvar constant to 3 (area, broadcast modes) in the 
source code, and recompilation, to function.  See documentation below.   

 
Note:  Users of the Terrain Analysis Program (TAP) ©, Golden Software, a commercial 

Longley-Rice ITM wrap-around software implementation, should check 
the documentation; TAP uses a modified version of ITMDLL that allows 
resetting of the mdvar (mode of variability) code without recompiling. 

 
 
Outputs: 
 
&dbloss dbloss, a.k.a. aref, the reference attenuation, or RF path loss, in dB 
 
strmode output string for use in printed report, indicating mode of operation of the 

calculation by printing out “Line of Sight Mode”, “Single Horizon”, or 
“Double Horizon”, and either “Diffraction Dominant”, or Troposcatter 
Dominant”.   

 
NOTE: New Option for point-to-point use; see optional alternative subroutine 

point_to_pointMDH released in ITMDLL.cpp version 7.0, June 2007, 
which replaces strmode with a single numerical code to eliminate printing 
“Line of Sight Mode”, etc. hundreds or thousands of times on the reports.  

 
&errnum errnum, a.k.a. kwx; the error indicator.  Must be preset by user input to 

zero at beginning of run.  Indicates: 
  0 = no warning 

1 = Warning: Some parameters are nearly out of range. Results should be  
used with caution. 



2 = Note: Default parameters have been substituted for impossible ones. 
This value indicates an effect on computations.  Since errnum (kwx) is 
cumulative, this effect on computations by substitution may or may not be 
true when higher numbers (3, 4, etc.) are reported out.  
3 = Warning: A combination of parameters is out of range. Results are 

probably invalid. 
4 and higher = Warning: Some parameters are out of range.  Results are  

probably invalid.  
 
Note:  Users of the Terrain Analysis Program (TAP) ©, Golden Software, a commercial 

Longley-Rice ITM wrap-around software implementation, should check 
the documentation; TAP uses an expanded and modified set of kwx 
(errnum), definitions.   

 
defines private, or local, arguments:  
 
prop_type prop:  array prop with elements: 

a. Prop.wn  wave number, = freq. in MHz/47.7 MHz*m;  
units in 1/meters 

b. prop.ens  surface refractivity (refractivity of the atmosphere) 
c. prop.gme  effective earth curvature 
d. prop.zgnd  surface impedance 
e. prop.zgndreal real surface impedance (resistance component) 
f. prop.zgndimag imaginary surface impedance (reactive component) 

 
prop_type propa;  array with elements: 
 
zsys =0 zsys;  preset to zero; later calculated to be the average elevation height 

along a selected portion of the total RF path (between ja and jb).  
zc conf, or confidence level to be calculated, in percent 
zr rel, or reliability level to be calculated, in percent 
eno atmospheric bending constant 
enso atmospheric bending constant  to be preset to zero. 
q utility value-holding variable 
ja a location along the RF path that is 1/10 of the total RF path length 

rounded to the nearest increment, plus three increments, away from the 
transmit terminal. Specified in units of increments. 

jb a location along the RF path that is 1/10 of the total RF path length 
rounded to the nearest increment, plus three increments, away from the 
receive terminal. Specified in units of increments. 

i incremented value in a for loop 
np number of points, the total number of increments between the elevation 

height measurement points from the profile array starting with the transmit 
terminal site and ending with the receive terminal.  

dkm total RF path distance, in kilometers 
xkm distance per path increment, in kilometers per increment 



fs free space path loss, in dB 
 
 
This subroutine: 
 

2.  Sets prop.hg[0] , the height above ground level of the transmitting antenna center 
of radiation, to be equal to tht_m, and sets prop.hg[1], the height above ground 
level of the receiving antenna center of radiation to be equal to rht_m; 

 
Line 1418:  prop.hg[0]=tht_m;   

prop.hg[1]=rht_m; 
 

3. Sets propv.klim to be equal to the radio_climate value set by the user; the 
customary default being 5, Continental Temperate; 

 
Line 1420:  propv.klim=radio_climate; 
 
 
 

4. Resets prop.kwx, the error indicator (a.k.a. errnum) to be equal to zero. 
 
Line 1421:  prop.kwx=0; 
  

5.  Presets propv.lvar to be equal to five. 
 
Line 1422:  propv.lvar=5; 
  

6. Sets prop.mdp , the mode of propagation, to be –1, which indicates operation in 
the point-to-point mode; 

 
Line 1423:  prop.mdp=-1; 
  

7.  Sets zc, the confidence level to be calculated by avar, to be equal to qerfi(conf), 
and sets zr, the reliability level to be calculated by avar, to be equal to querfi(rel). 

 
Line 1424:  zc = qerfi(conf); 
                   zr = querfi(rel); 
  

8.  Sets np, the number of increments (one less that the total number of elevation 
points in the path), equal to the value of elev[0] ( a.k.a. pfl [0]).   The SPLAT 
version, itm.cpp, defines the argument np to be long(elev[0]) to handle much 
more detailed (more increments per km) RF terrain paths than those originally 
anticipated by the ITMDLL.cpp. 

 
  Line 1426:  np=(long)elev[0]; 
 



9.  Sets dkm to be equal to the number of increments multiplied by the distance in 
meters between elevation points, divided by 1000 meters per kilometer.   The 
result is the total RF path distance between the terminals, in kilometers. 

 
Line 1427: dkm=(elev[1]*elev[0])/1000.0; 
  

10.  Sets xkm to be equal to the distance in meters between elevation points, divided 
by 1000 meters per kilometer.  The result is the length of one increment, in 
kilometers. 

 
Line 1428:  xkm=elev[1]/1000.0; 
 
 

11.  Sets eno, the atmospheric bending constant (relative permittivity) equal to the 
value of eno_ns_surfref; 

 
Line 1429:  eno=eno_ns_surfref; 
    

12.  Presets enso equal to zero. 
 
Line 1430:  enso=0.0; 
 

13. Presets q to be equal to enso, which in step 11, was preset to be equal to zero. 
   
Line 1431:  q=enso; 
 

14. An if statement is initiated; if q is less than or equal to zero, (a given, in that q was 
set to be equal to zero in step 12), then: 

a. ja is set to be equal to three increments, plus one-tenth of the total RF path 
distance in increments.   The SPLAT version, itm.cpp, defines the 
argument ja to be  equal to long(3+.1*elev[0]).  

b.  jb is set to be equal to the total number of increments, plus six,  less ja..  
This sets jb to be the same distance away from the receive terminal, along 
the rf path, that ja is from the transmit terminal. 

 
Line 1433:  if (q<=0.0) 

  {  
  ja=(long)(3.0+0.1*elev[0]);  /* KD2BD added (long) */ 

   jb=np-ja+6; 
 

15. A for loop is initiated, embedded within the if statement.  The loop operates from 
i = ja-1, until i=jb. As the loop cycles, the value of zsys, which was preset to zero 
when declared, reads and sums up the value of all elevations along the RF path 
from ja to jb. 
 

Line 1438: for (i=ja-1; i<jb; ++i) 



   zsys+=elev[i]; 
  

16.  After the for loop has completed its cycle, then zsys is divided by the value of the 
total number of elevation points starting at ja and ending at jb.   This results in 
zsys being equal to the average elevation height between ja and jb.  

 
Line 1441:     zsys/=(jb-ja+1); 
 
:  

17.  q is reset to be equal to eno, the atmospheric bending constant.. eno varies with 
elevation above ground; here it is set to equal ens, the refractivity of the 
atmosphere as it approaches the surface of the earth, a user selected input with a  
customary preset value of 301.000 N-units.  The if statement then ends its run. 

 
Line 1442:   q=eno; 

 } 
 

18.  propv.mdvar, the mode of variability, is set to be equal to 12.  This consists of a 
combination of modes 10 and 2.  The value “10” is added for the point-to-point 
mode, which causes location variability to be eliminated.  [However, this should 
not be true in version 7, which allows location variability to be set].  The value 
“2” indicates “Mobile” mode, where reliability is calculated as a combination of 
time and location variability.  Confidence in mode 2 (or 12) is given by the 
situation variability. 

  
NOTE:  It is interesting to note that for TV or FM broadcast use, in point_to_point mode, 
the mdvar is set to Mobile mode, not Broadcast.  The code for mdvar, the variability 
mode, which sets the mode of operation, is a tens and single digit code.  The single digits 
represent: 

0 - Single message mode.  Time, location and situation variability are 
combined together to give a confidence level. 

1 – Accidental mode.  Reliability is given by time availability.  
Confidence is a combination of location and situation variability. 

2 – Mobile mode.  Reliability is a combination of time and location 
variability. Confidence is given by the situation variability. 

  3 – Broadcast mode. Reliability is given by the statement of –at least- qT 
of the time in qL of the locations.  Confidence is given by the situation variability. 
 
The tens code is:  No tens; default to area mode; combined code is 0 to 3. 
  10 – For the point-to-point mode.  Location variability is eliminated. 

20 – For interference problems.  Direct situation variability is eliminated. 
Note that there may be a small residual situational variability. 

 
So the setting of mdvar equal to 12, hard-coded into the ITMDLL.cpp, means that the 
current version of ITMDLL.cpp is never intended to be used for broadcast unless the 
value of mdvar is changed in the source code and the ITMDLL is re-compiled. 



 
Note: Therefore, for broadcast reception prediction use, the ITMDLL should be 
modified to allow external resetting of the mdvar; this is especially critical in light of 
the new optional subroutine point_to_pointMDP, which allows for setting the 
percentage value for location.  Golden Software, in its TAP© commercial ITM 
software, has already made this modification prior to the issuance of version 7 of 
ITMDLL.cpp. 
 
Line 1445: propv.mdvar=12; 
  

19.  Subroutine qlrps is then called with inputs: 
a. frq_mhz,  the frequency in MHz 
b. zsys,  the average terrain height along path ja to jb 
c. q,   most recently set to be equal to eno, the atmospheric 

bending constant 
d. pol,  polarity of the transmitted and received RF signal 
e. eps_dielect, earth’s dielectric constant  
f. sgm_conductivity,   earth’s conductivity 
g. prop;  the array prop. 

 
From these inputs, subroutine qlrps calculates and processes the following 
data and inserts it into the prop_type structure  (prop_type & prop) : 
h. Prop.wn  wave number (=freq. in MHz/47.7 MHz * meters) 

units in 1/meters 
i. prop.ens  surface refractivity 
j. prop.gme  effective earth curvature 
k. prop.zgnd  surface impedance 
l. prop.zgndreal real surface impedance (resistance component) 
m. prop.zgndimag imaginary surface impedance (reactive component) 

 
 Line 1446:  qlrps(frq_mhz,zsys,q,pol,eps_dielect,sgm_conductivity,prop);  
 

20.  Subroutine qlrpfl is then called with inputs: 
a. elev,  array elev (a.k.a. array pfl) 
b. propv.klim, the climate variable 
c. propv.mdvar, the mode of variability (operating mode) 
d. prop,  array prop 
e. propa,  array propa 
f. propv.  array propv 

 
Subroutine qlrpfl calls subroutines hzns, dlthx (which calls zlsq1 and qtile), after 
which qlrpfl may call zlsq1 directly, then ends by calling lrprop. Subroutine 
lrprop then places the value of aref, the value of the reference attenuation, or RF 
path loss, along the RF path, into array location prop.aref; 

 
Line 1447: qlrpfl(elev,propv.klim,propv.mdvar,prop,propa,propv); 



 
 

21. The free space path loss is then calculated by determining the amount of RF 
emitted from a point source, or isotropic antenna, at the center-point of a sphere, 
that would be received by a frequency-tuned antenna embedded in the surface of 
the sphere at a radius r equal to the RF path distance, all in free (open and well 
above the surface) space.  The formula, for units of: 

a. Frequency in MHz, and 
b. Distance in kilometers (prop.dist/1000) is: 

 
Free Space Loss, in dB = 32.45 + 20*log10(Distance) + 20.0*log10(Frequency) 

  
Line 1448:  fs=32.45+20.0*log10(frq_mhz)+20.0*log10(prop.dist/1000.0); 
 
In steps 22 to 28, the subroutine utilizes string mode (strmode) to prepare printouts of the 
operating mode for use in a printed report. 
 

22. Once again we press the utility variable q into service, setting it to be equal to 
prop.dist-propa.dla, subtracting the distance to the sum of the transmitter horizon 
and the receive horizon (or highest visible obstruction), from the total path 
distance.  This causes q to be equal to zero at the peak of the obstruction, when 
both the transmitter and the receiver can see the peak of the obstruction, as under 
this circumstance, prop.dla is equal to prop.dist.  If there are multiple 
obstructions, q will be positive, as prop.dla will be less than prop.dist.  

 
Line 1449:  q=prop.dist-propa.dla; 
 
NOTE: The variable q here is used to determine where the printed report stops printing 
“Line-of-Sight Mode”, and prints “Single Horizon” instead.  It does not control the actual 
switch from line of sight to diffraction mode; that happens in subroutine lrprop, and 
usually does not match the printout. (A bug for which a fix is discussed later).  
 

23. An if statement is initiated; if the integer value of q , which was calculated in step 
22, is negative (less than zero), then the path is line-of-sight, and the string 
prepares to output “Line-Of-Sight Mode” to an output terminal. 
    

Line 1451: if (int(q)<0.0) 
   strcpy(strmode,"Line-Of-Sight Mode"); 
  

24. An else statement follows, so if q is greater than or equal to zero:  
 

Line 1453: else 
         { 
 



25. An if statement is embedded within the else statement, so if the integer value of q 
is equal to zero, then: the string prepares to output “Single Horizon” to an output 
terminal. 
 

Line 1455:   if (int(q)==0.0) 
   strcpy(strmode,"Single Horizon"); 
 

26. An else if statement pair is embedded within the else statement in step 24, so if 
the integer value of q is greater than zero, then the string prepares to output 
“Double Horizon” to an output terminal. 

 
Line 1458:  else if (int(q)>0.0) 
   strcpy(strmode,"Double Horizon"); 
 

27. The following if statement is also embedded within the else statement in step 24, 
so if:  

a. q is not less than zero, and; 
b. prop.dist is less than or equal to propa.dlsa (i.e., the total path length, 

prop.dist, is shorter than or equal to: the sum of the two smooth earth 
horizon distances) or; 

c. prop.dist is less than or equal to propa.dx, the distance beyond which 
troposcatter mode has dominance, then: 

d. the string prepares to concatenate (append) the phrase “, Diffraction 
Dominant” to the phrase preloaded in steps 25 or 26 above. 

 
Line 1461: if (prop.dist<=propa.dlsa || prop.dist <= propa.dx) 
   strcat(strmode,", Diffraction Dominant"); 
 

28.  An else if statement pair follows; they are also embedded within the else 
statement in step 24, and counteroffer the if statement in step 27.  So if prop.dist 
is greater than propa.dx, the distance beyond which troposcatter mode has 
dominance, then the string prepares to concatenate (append) the phrase “, 
Troposcatter Dominant” to the phrase preloaded in steps 25 or 26 above. 

 
Line 1464: else if (prop.dist>propa.dx) 
   strcat(strmode, ", Troposcatter Dominant"); 
 } 
 

29.  The subroutine avar is called with inputs:  
a. zr, the time reliability, (50% of the time) as a percentage decimal 

 value between 0.01 and 0 .99, to be calculated. 
b. 0.0, the location percentage (at 00% of locations) to be  

calculated. (Location percentage is disabled for mdvar= 2 or 12). 
c. zc, the confidence, as a percentage decimal value between 0.01 

 and 0.99, to be calculated. 
d. array prop, 



e. array propv 
 

Subroutine avar returns avarv, a value representing the reference attenuation aref 
adjusted for the additional loss to be included as a result of calculating for 
statistical variation as a percentage of time, location, and confidence as authorized 
by the setting of the mdvar code.  The value of dbloss (a.k.a. aref, the reference 
attenuation in dB) is set to be equal to the value of avarv in dB returned by 
subroutine avar and the value of the free space attenuation. 

 
  Line 1468:   dbloss=avar(zr,0.0,zc,prop,propv)+fs; 
 
 

30.  The value of the output-accessible argument errnum is set to be equal to the 
value of prop.kwx, the error indicator. 

 
 Line 1469  errnum=prop.kwx; 

   } 
 
Subroutine point_to_point ends.  The user-supplied wrap-around input-output program 
continues. For a single terrain profile, the wrap-around input-output program may 
execute subroutine point_to_point hundreds of times to calculate the RF signal loss for 
each terrain point (except the transmitter site) calculated along the terrain path.  For a 
modern point-to-point area mapping of signal loss, the wrap-around input-output program 
may run point_to_point thousands, hundreds of thousands, or even millions of times to 
calculate the RF signal loss for each terrain point.  So it is important to keep the code 
“lean and tight” for purposes of speed of execution. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Chapter 5: Qlrps 
 
 
Quick Longley-Rice Preparatory Subroutine; qlrps.   
 
Note: Used with both point-to-point and area prediction modes. 
 
From ITMD Section 41: 
 
Call inputs: 
 
fmhz  Frequency, in MHz  range 20 up to 2,000  
zsys general system elevation (calculated by lrprop subroutine to be the 

average elevation of  the middle 80% of elev_l (a.k.a. pfl) path  
elevations, starting at 1/10 of the path and ending at 9/10 of the path.) 

en0  Surface refractivity reduced to sea level (a.k.a. Atmospheric Bending  
Constant); normal default value = 301.000 N-Units 

ipol  polarity (H=0, V=1) for FM vehicular reception, normal default =1 
eps polarization constant (a.k.a. Earth’s Dielectric Constant, or Relative 

permittivity); normal default value = 15.000 
sgm ground constant (a.k.a. Earth’s Conductivity);  

normal default value = 0.005 Siemens/meter 
 
 
This subroutine: 
 

31. Declares and establishes the constant gma to be equal to 157e-9.   The constant 
gma represents an approximation of earth’s actual curvature, as it represents the 
curvature of a sphere, where the earth is in fact, a spheroid.  The “earth’s actual 
curvature” is specified as:  157 N-units/km., or (157 * 10^-9)/m.  The units of 
gma is 1/meter.   

 
Line 372: double gma = 157e-9 

 
32. Converts the frequency fmhz, to wave number wn . 

 
Line 374:   prop.wn=fmhz/47.7  [Alg. 1.1] 
 
 The wave number at 100 MHz, as an example, would be = 2.0964/meter. 
 

33. Uses the surface refractivity reduced to sea level, en0, and the general system 
elevation, zsys, to calculate the surface refractivity, ens, using the formula: 

 
ens = en0^(-zsys/z1),  where z1 = 9,460 m.  [Alg. 1.2] 



 
 

Line 375: prop.ens=en0   
Line 377: if (zsys!=0.0)    /* zsys is preset to 0 by point_to_point for first round. */ 
Line 380: Prop.ens*=exp(-zsys/9460.0)           /* if zsys is not equal to 0.0, multiply  

      Zsys by the exponent (-zsys/9460.0). 
        
 If, for example, zsys =946 m., ens =eno^(-.1) = 301^(-.1) = .565 N-units. 
 
 

34. Uses the constant gma, earth’s actual curvature, and the surface refractivity ens 
(prop.ens) calculated on line 380, to calculate the effective earth curvature gme  
(prop.gme), using the empirical formula gme=gma*(1-0.04665^(ens/en1)) 
[Alg. 1.3] , Where en1 is 179.3 N-units.   

 
Line 380:  prop.gme=gma*(1.0-0.04665*exp(prop.ens/179.3))  

 If, for example, ens = .565 N-units,  
 

prop.gme =(157*10^(-9))*(1-(.04665)^(.565/179.3))= (1.509e-9)/meters. 
  
 Units for prop.gme are: 1/meters. 
 

35. Calls complex, a c++ subroutine, to use the polarization constant, eps, the ground 
constant, sgm, the wave number wn  (prop.wn), and the polarity ipol,  to calculate 
the surface impedance zgnd (prop_zgnd). 

 
Line 381:    complex<double> zq, prop_zgnd(prop.zgndreal,prop.zgndimag); 
Line 382: zq=complex<double> (eps, 376.62*sgm/prop.wn);  [Alg. 1.5] 
Line 383: prop_zgnd=sqrt(zq-1.0)      
 
Line 385: if (ipol!=0.0) 
Line 386: prop_zgnd=prop_zgnd/zq;  [Alg. 1.4] 
 
Line 388: prop.zgndreal=prop_zgnd.real() 
Line 399:  prop.zgndimag=prop_zgnd.imag() 
 

36. Outputs to prop_type structure (prop_type & prop) : 
a. Prop.wn wave number 
b. prop.ens surface refractivity 
c. prop.gme effective earth curvature 
d. prop.zgnd surface impedance 
e. prop.zgndreal  real surface impedance (resistance component) 
f. prop.zgndimag imaginary surface impedance (reactive component) 

 
 
 



Chapter 6; Qlrpfl 
 
Quick Longley-Rice Profile 
 
Note: Used with point-to-point mode only.  Called by point_to_point after calling qlrps. 
Calls hzns, dlthx (which calls zlsq1 and qtile), after which qlrpfl may call zlsq1 directly, 
then ends by calling lrprop.   
 
Please note that the qlrpfl subroutine, and the dlthx, hzns and zlsq1 subroutines that are 
called during qlrpfl, were intended to be experimental early versions, but are still in use 
today with few modifications or corrections.  George Hufford, in The ITM Manual states:  

 
“It should be noted that the original ITM is silent on many of the details for 
defining some of the path parameters.  This is particularly true of the effective 
heights HE, and, to some lesser degree, of the terrain irregularity parameter DH.  
The effective height, for example is defined as the height above the “effective 
reflecting plane,” and in the past the investigator has been urged to use his own 
best judgement as to where that plane should be placed. The subroutine QLRPFL, 
in trying to automate the definition of all parameters, has been forced to define 
explicitly all missing details. It has done this in a way that seems reasonable and 
in full accord with the intent of the model.   One should not, however, conclude 
that these efforts are completed. Hopefully, better results are obtainable.”       

 
 
From ITMD Section 43: 
 
Call inputs: 
 
pfl terrain elevation profile array, starting at tx, ending at rcvr, following great 

circle path, with: 
  pfl[0] =enp, the number of increments 
  pfl[1] = xi, distance per increment  
  pfl[2] = z(0), the transmitter tower base AMSL, or elevation height 
  pfl[[np+2] = z(np), the receive location AMSL, the last elevation. 
 
klimx  a.k.a. propv.klim, the climate code 
mdvarx a.k.a. propv.mdvar,  the mode of variability; preset to 12.0 in  the 

point_to_point subroutine, and readjusted during qlrpfl;  
 
defines private, or local, arguments:  
np  number of points  
j  terminal, either 0 (1, or transmit site) or 1 (2, or receive site) 
x1[0]  position on terrain path a short distance from transmitter site  
x1[1]  position on terrain path a short distance from receive site 
q  ∆h(s), delta h adjusted for the path length 
za elevation value in meters of the average terrain height at the transmit site 



zb elevation value in meters of the average terrain height at the receive site  
temp  temporary value holding variable used at line 1326 and line 1327. 
 
 
This subroutine: 
 

37. Uses pfl [0], number of points, and pfl [1], increment distance, to calculate path 
length prop.dist. 

 
Line 1302: prop.dist=pfl[0] * pfl[1]; 
 

38. Defines np, number of points, to be equal to the value stored in pfl [0]. 
 
Line 1303: np=(int)pfl (0); 
 

39. Calls subroutine hzns, forwarding as input, arrays pfl and prop. 
 

Line 1304: hzns(pfl,prop);      See separate description for subroutine hzns. 
 

40. hzns returns: 
a. prop.the[0] horizon elevation angle as seen from tx antenna center; 

specified as vertical units of increase or decrease per horizontal distance. 
b. prop.the[1] horizon elevation angle as seen from rcvr antenna center; 

specified as vertical units of increase or decrease per horizontal distance. 
c. prop.dl[0] distance from transmitter tower base to horizon 
d. prop.dl[1] distance from receive antenna ground point to horizon 

 
41. A for loop is initiated to determine the values of x1 and x2.   This is a short loop, 

2 cycles, from j=0 to j<2, i.e. for j=0 and j=1.  j refers to the terminals, j=0 
represents the transmitter site terminal, j=1 represents the receive site terminal. 

 
Line 1306: for (j=0; j<2; j++) 
 

42.   The loop performs the following operations: 
 
 

a. On the first pass, sets the value of xl[0] (a.k.a. x1, or x-one,) equal to the 
lesser of (15 times the height of the transmit antenna, or 1/10 of the 
distance from tx tower base to horizon.   

 
Line 1307:  xl[j]=mymin(15.0*prop.hg[j],0.1*prop.dl[j] 
 

b. On the second pass, sets the value of x1[1] (a.k.a. x2) equal to the lesser of 
15 times the height of the receive antenna, or 1/10 of the distance from the 
receive site to the horizon.    

 



43. The value of xl[1] is then set equal to the path distance less the existing value of 
xl[1].   This makes it equal to the distance from the transmitter site to the point 
near the receiver site. 

 
Line 1309:  xl[1]=prop.dist-xl[1] 
 
 

44. The value of prop.dh, the terrain irregularity parameter (a.k.a. delta h) is then 
determined by calling subroutine dlthx(pfl,xl[0],xl[1].  

 
Line 1310:  prop.dh=dlthx(pfl,xl[0],xl[1]); 
 
  Dlthx calls mymin, mymax, assert, zlsql and qtile. 

 
dlthx returns dlthxv, the ∆h (a.k.a. delta h or dh) terrain irregularity parameter, 
which is stored in prop.dh 
 

45. Next, an if statement is initiated; the first task of this if statement is to determine 
if the path is a line-of-sight path, or a trans-horizon path.  If the sum of prop.dl[0} 
and prop.dl[1], the horizon distances from the transmitter to the horizon and the 
receiver to the horizon, is less than 1.5 times the total path distance prop.dist, then 
the path is determined to be a line-of-sight path.   

 
For example, if the transmit to receive path distance is 10,000 meters (10 km), 
then the combined total of the distance to the horizon from the transmit site, and 
of the distance to the horizon from the receive site, must equal or be greater than 
150% of 10 km, or 15,000 meters (15 km), overlapping each other by an average 
of 1/3 of each, for the RF path to be determined to be a line-of-sight path.   
 
As a second example, if there is a single obstacle, then the combination of the 
distance to the horizon (the obstacle) from the transmit site and of the distance to 
the horizon (the obstacle) from the receive site, would approximately equal the 
combination of the distance to the horizon (obstacle) from the transmit site and of 
the distance to the horizon (obstacle) from the receive site, and would therefore 
not meet or exceed the 150% of total path length overlap requirement necessary to 
determined to be a line-of-sight path.  The default determination made would be 
that the RF path is a trans-horizon path, and the computer program would jump to 
the else statement on Line 1343. 
 

Line 1312:  if (prop.dl[0] +prop.dl[1]>1.5*prop.dist) 
 
 

46. If the path is a line-of-sight path, the if statement then continues: 
a. subroutine zlsql is called with inputs (pfl, x1[0],xl[1]), in order to 

calculate an average terrain line between points x1[0] and xl[1], and determine the 
average elevation height on that line at the location of x1[0] and x1[1] ; 



  b. zlsq1 then returns:  
za = z0, the elevation value of the average terrain line at the 
transmitter site. 
zb = z1, the elevation value of the average terrain line at the 
receive site. 

c. The effective height of the transmit site, he(0), is set to be equal to 
prop.hg(0) + pfl(2) – za, but only if pfl(2) > za.  If  pfl(2) is not > za, then 
he(0) is set to be equal to prop.hg(0).  
 
Therefore prop.he(0), the effective height of the transmit site, is set to be 
equal to prop.hg(0); and if the existing ground height of the transmit site, 
pfl(2), is above the average elevation height at the transmit site, za, 
(established by zlsq1), then the difference in height between the average 
transmit site elevation height and the ground height is also added to 
prop.he(0). 
 
d. the effective height of the receive site, prop.he(1), is set to be equal to 
prop.hg(1) + pfl(np+2) – zb, but only if pfl(np+2) > zb.  If  pfl(np+2) is 
not > zb, then prop.he(1) is set to be equal to prop.hg(1). 
 
Therefore prop.he(1) is set to be equal to prop.hg(1), and if the existing 
ground height of the receive site, pfl(np+2), is above the average elevation 
height at the receive site, zb, the difference in height between the average 
receive site elevation height and the ground height is also added to 
prop.he(1). 
 

Line 1314:  zlsq1(zpfl,x1[0],x1[1],za,zb); 
Line 1315: prop.he[0]=prop.hg[0]+FORTRAN_DIM(pfl[2],za); 
Line 1316:   prop.he[1]=prop.hg[1]+FORTRAN_DIM(pfl[np+2],zb); 
 

47.  A for loop, with two loops (j=0 and j=1), within the above for loop (started in 
Step 5.) is initiated here, to determine or re-determine the values of prop.dl[0], the 
distance from the transmitter site to the horizon, and prop dl[1], the distance from 
the receive site to the horizon, for a line of sight analysis.    

 
NOTE:  The Environmental Science Services Administration (ESSA) Technical 
Report ERL 79-ITS 67, “Prediction of Tropospheric Radio Transmission Loss Over 
Irregular Terrain, A Computer Method – 1968” by A.G. Longley and P. L. Rice, 
states on page 12, starting with paragraph 2:  
 

“When individual path profiles are not available, median values of the horizon 
distances dL1, 2  are estimated as functions of the median effective antenna heights 
he1 and he2 determined above, the terrain irregularity factor ∆h, and the smooth-
earth horizon distances DLs1  and DLs2 .  The smooth earth distance from each 
antenna to its horizon over a smooth earth is defined as:  

 



DLs1, 2 = (.002 * a * he1, 2).5   in km.   ITS67 (5a) 

  

where the effective antenna heights he1, 2 are in meters and the effective earth’s 
radius a is in kilometers, as defined by (1).   The sum of the smooth-earth horizon 
distance is  

DLs  =  DLs1  +   DLs2 ,  in km.      ITS67 (5b) 
 
 Median values of horizon distances over irregular terrain are estimated as  
 

 DL1, 2 = DLs1, 2   exp(– .07 (∆h/he) .5   in km,  ITS67 (5c) 
 where 
   he  =  he1, 2  for  he1, 2   > 5 meters,  or   5 meters otherwise. 
 
 The total distance, dL, between the antennas and their horizons is  
 

   dL  =  dL1  +   dL2 ,  in km”.   ITS67 (5d) 
    
To use these formulas in this subroutine, we convert from km to meters: 

 
DLs1, 2 = (.002 * a * he1, 2).5   in km.   ITS67 (5a) 

becomes:  
DLs1, 2 = (2 * he1, 2 * a ).5   in meters 

 
The effective earth’s radius a, in kilometers, is defined by ITS67 (1).  The term gma, 
representing earth’s actual curvature, is a simplified approximation, as it treats the 
earth as a sphere, not a spheroid.  It is established in subroutine qlrps to be equal to 
157e–9 1/meter, and used in step 4 of qlrps to calculate the effective earth curvature, 
gme, which is then stored in array prop at prop.gme.  
 
So what is the relationship between a and gma?  One might reasonably assume that 
earth’s actual curvature would be defined as the change per meter of circumference of 
the earth.  If the actual earth’s radius is r, then the earth’s circumference is: 
   

 ce = 2 * (PI)  * r   

 

 and the actual earth’s curvature might be defined, per meter, by 1divided by the 
circumference;  
    gma =  1/ ce  = 1/(2 * PI * r) 
 
So for an actual earth radius of  r = 6,370,000 meters, gma would be = .0000000249 
or 249e-10; but it is not.  The established value for gma is 157e9, equal to 
1/6,370,000 meters.  Therefore, the actual relationship between a and gma is:  
       
    gma =  1/(actual earth’s radius, in meters) 
 



The same relationship therefore applies between the effective earth’s radius and the 
effective earth’s curvature: 
    gme =  1/a, in units of 1/meters, and  a  = 1/ gme. 
 
   
So then,   DLs1, 2 = (2 * he1, 2 * a ).5  m.  becomes  DLs1, 2 = (2 * he1, 2 / gme     ).5  m. 
      
In converting from km to meters:  
 

DL1, 2 = DLs1, 2   exp(– .07 (∆h/he) .5   in km,  ITS67 (5c) 
Becomes: 
  DL1, 2 = DLs1, 2   exp(– .07 (∆h/he) .5   in meters, 
 
Substituting the formula for DLs1, 2 derived above:  
 

DL1, 2 = ( (2 * he1, 2 / gme ) exp(– .07 (∆h/he) .5) .5   in meters, 
where 
  he  =  he1, 2  for  he1, 2   > 5 meters,  or   5 meters otherwise. 
 
Which we can restate in the notation primarily used in this text as: 
 
   Prop.dl[j] =  ((2*prop.he[j]/prop.gme)^( –.07*(prop.dh/mymax(prop.he[j],5)^.5)  
 
The formula for the total distance between the antennas and their horizons is the same 
as long as all units are in either km or meters:   

 
dL  =  dL1  +   dL2 ,  in meters; 

 
 
A problem with this subroutine, with respect to both line-of-sight and trans-
horizon paths, is that the Irregular Terrain Model code, ITMDLL.cpp, still uses 
a formula derived from ITS67 (5c) for the point_to_point mode, despite the fact 
that Anita Longley and Phil Rice flatly stated, at the beginning of paragraph 2, 
page 12 of the ESSA Technical Report ERL 79-ITS 67 quoted above, that it was 
to be used “only when individual path profiles are not available”.   
 
The point_to_point mode utilizes an individual path profile, input as array pfl. 
The use of the NTIA-released ITMDLL.cpp c++ software requires the use of 
additional code, a “wrap-around” package (an example being the open source 
program SPLAT, or its experimental, advanced concept development cousin 
SPLAT with PLOP) that is compiled with the irregular terrain model windows-
compatible software (or in the case of SPLAT, the linux-friendly itm.cpp) that 
prepares the input, including deriving the pfl array from the raw elevation 
database data, and processes the output from the core itm.cpp subroutines, 
 



 The pfl array, especially when used in multiple runs to analyze signal loss 
and/or reception over a large area, usually contains far more elevation data, 
extending along the great circle path through the receive site, than is required to 
derive the distance to the actual horizon.  The first two values stored in the array 
pfl, as sent to the point_to_point subroutine call, are pfl[0], the value of the 
number of intervals, and pfl[1], the value of the width, in meters, of an 
individual interval.  The value of pfl[0] is set to indicate the number of intervals 
between the transmit site, and a receive site to be considered, and indicates the 
minimum number of elevation data values stored in the array pfl.  The value of 
pfl[0] does not necessarily indicate the maximum number of elevation data 
values stored in the array pfl.  The pfl array, especially when used in multiple 
runs to analyze signal loss and/or reception over a large area, usually contains 
far more elevation data, extending along the great circle path through the 
receive site, than is required to derive the distance to the receive site in question, 
as the wrap-around software will store elevation values in the pfl array 
extending out several tens of kilometers, in anticipation of repeating the 
point_to_point call to derive loss values at hundreds of receive locations along 
the rf path being studied.  Therefore, the elevation data stored in the pfl array 
usually, if not always, represents elevation data along the great circle path 
extending far beyond any value of the horizon for a ground-mounted reception 
site.  In the few cases where this data is not available, i.e. where the database 
from which the pfl array was derived does not extend to the horizon, this 
methodology could remain available as a default, and an additional kwx flag 
could be generated, to indicate that the pfl array does not extend to the radio 
horizon and that the distances to the radio horizon are estimated.   
  
Therefore, with today’s comprehensive elevation databases, including the SRTM 
and NED elevation data, there is little or no call to continue to use this 
approximation instead of deriving a more accurate result, where available, for 
the distances to the actual horizons, from the elevation database.    
 
Therefore, this subroutine’s code is eligible for review and revision in order to 
make today’s ITM computer programs operate more in accordance with 
Longley and Rice’s original concept, procedure, and instructions, by deriving 
the actual distance to the radio horizons from the transmit and receive sites, 
from additional terrain profile data in the pfl array. 
 
 
48. The value of prop.dl[0] is estimated as a median value of a horizontal distance 

over irregular terrain using the formula: 
 

 Prop.dl[0] =  ((2*prop.he[0]/prop.gme)^(.07*(prop.dh/mymax(prop.he[0],5)^.5)  
          ITS67 (5c) 
          

Where:  
  prop.he[0] is the effective height of the transmitter site (from step 10)  



prop.he[1] is the effective height of the receive site (from step 10) 
prop.gme is the effective earth’s curvature, input with the point_to_point 
subroutine call 
prop.dh is the terrain irregularity parameter, ∆h, or delta h, obtained from 
the dlthx subroutine call on line 1310. 

  
Similarly, the value of prop dl[1] is estimated as: 

 
Prop.dl[1] =  ((2*prop.he[1]/prop.gme)^( –.07*(prop.dh/mymax(prop.he[1],5)^.5)  

          ITS67 (5c) 
 

Line 1318: for (j=0; j<2; j++) 
prop.dl[j]= 
sqrt(2.0*prop.he[j]/prop.gme)*exp(–0.07*sqrt(prop.dh/mymax(prop.he[j],5.0))); 

 
 
                      
 

49. The variable q is then set to be equal to the combined total of the distance to the 
horizon from the transmit site, dl[0], and the distance to the horizon from the 
receive site dl[1], for a line of sight analysis.            

 
Line 1321:  q=prop.dl[0]+prop.dl[1]; 
 
    

50.  An if loop is initiated; if q, as defined in step 12 above, is less than the total path 
distance from the transmit site to the receive site, then the variable temp is set to 
be equal to the total path distance, prop.dist, divided by q, and the value of q is 
then reset to be equal to the square of the value stored in temp. 

 
A rare comment in the itm.cpp c++ code, referring to the earlier FORTRAN version, 
states:  q=pow(prop.dist/q,2.0); 
       
Line 1323: if (q<=prop.dist) 
  { 
   /* q=pow(prop.dist/q,2.0); */ 
   temp=prop.dist/q; 
   q=temp*temp; 
 
    

51.  A for loop is initiated, again with two loops, j=0 and j=1, for the transmitting and 
receive site locations.  This for loop:   

a. changes the value of prop.he[0] to be equal to the existing value of 
prop.he[0], the effective height of the transmit antenna, multiplied by the 
value of q, and;  



b. changes the value of prop.he[1] to be equal to the existing value of 
prop.he[1], the effective height of the receive antenna, multiplied by the 
value of q. 

c. again resets the value of prop.dl[0], which represents the distance from the 
transmit site to the horizon, to be equal to: 
 

dl[0]= sqrt(2.0*prop.he[0]/prop.gme)*exp(–0.07*sqrt(prop.dh/mymax(prop.he[0],5.0))); 
             ITS67 (5c) 

 
Where, as in step 11 above:  

  prop.he[0] is the effective height of the transmitter site (from step 10) 
 prop.he[1] is the effective height of the receive site (from step 10) 
prop.gme is the effective earth’s curvature, input with the point_to_point 
subroutine call 
prop.dh is the terrain irregularity parameter, ∆h, or delta h, obtained from 
the dlthx subroutine call on line 1310. 

d. And also again resets the value of prop.dl[1], which represents the 
distance from the receive site to the horizon, to be equal to: 
 

dl[1]= sqrt(2.0*prop.he[1]/prop.gme)*exp(–0.07*sqrt(prop.dh/mymax(prop.he[1],5.0))); 
  ITS67 (5c) 

 
Line 1329: for (j=0; j<2; j++) 
   { 
      prop.he[j]*=q; 
      prop.dl[j]=sqrt(2.0*prop.he[j]/prop.gme)*exp(–
0.07*sqrt(prop.dh/mymax(prop.he[j],5.0))); 
   } 
  } 
 

52.  A for loop is initiated, again with two loops, j=0 and j=1, for the transmitting and 
receive site locations.  This for loop determines the value of prop.the[0] and 
prop.the[1], the “theta” angle:   

a. resets the value of q to be equal to 2 * prop.he[0]/prop.gme 
b. sets the value of prop.the[1] equal to: 

prop.the[0]=(0.65*prop.dh*(q/prop.dl[0] –1.0) –2.0*prop.he[0])/q; 
c. resets the value of q to be equal to 2 * prop.he[1]/prop.gme 
d. sets the value of prop.the[1] equal to: 

prop.the[1]=(0.65*prop.dh*(q/prop.dl[1] –1.0) –2.0*prop.he[1])/q; 
 
Line 1336:   for (j=0; j<2; j++) 
  { 
   q=sqrt(2.0*prop.he[j]/prop.gme); 
   prop.the[j]=(0.65*prop.dh*(q/prop.dl[j] –1.0) –2.0*prop.he[j])/q; 
  } 
 } 



 
 

53.   If the path was determined to be line-of-sight, the program then ignores the else 
statement below, and proceeds to step 17.  If the path determination defaulted to 
trans-horizon, the program proceeds to execute the else statement.  

     
a. For a trans-horizon path, the else statement calls zlsq1 with inputs 
(pfl,xl[0],0.9*prop.dl[0]);  
Where plf is the elevation array;  
xl[0] is the transmit site elevation, and  
the term 0.9*prop.dl[0] specifies a location that is at a point 9/10th of the distance 
from the transmit site toward the transmit site horizon.  
 
Subroutine zlsq1 calculates an average terrain line between points x1[0] and the 
point represented by (0.9*prop.dl[0]), and determines the average elevation 
height on that line at the locations x1[0] and (0.9*prop.dl[0]); 

  
 zlsq1 then returns:  

za = z0, the elevation value of the average terrain line at the 
transmitter site. 
q= z1, the elevation value of the average terrain line at the point 
9/10th of the distance from the transmit site toward the transmit 
site horizon. 

   
b. The subroutine zlsq1 is called with inputs (pfl, prop.dist−0.9*prop.dl[1],xl[1]);  
Where:  plf is the elevation array; 

the term (prop.dist−0.9*prop.dl[1]) specifies a location that is at a point   
9/10th of the distance from the receive site toward the receive site horizon, 
and;  
 xl[1] is the receive site elevation  

 
Subroutine zlsq1 calculates an average terrain line between the point represented 
by (prop.dist−0.9*prop.dl[1]), and the point represented by x1[1], and determines 
the average elevation height on that line at those two points; 

  
       zlsq1 then returns:  

q = z0, the elevation value of the average terrain line at a point   
9/10th of the distance from the receive site toward the receive site 
horizon. 
zb = z1, the elevation value of the average terrain line at the 
receive site. 

  
c. The effective height of the transmit site, he(0), is set to be equal to 
prop.hg(0) + pfl(2) – za, but only if pfl(2) > za.  If  pfl(2) is not > za, then 
he(0) is set to be equal to prop.hg(0).  
 



Therefore prop.he(0), the effective height of the transmit site, is set to be 
equal to prop.hg(0); and if the existing ground height of the transmit site, 
pfl(2), is above the average elevation height at the transmit site, za, 
(established by zlsq1), then the difference in height between the average 
transmit site elevation height and the ground height is also added to 
prop.he(0). 
 
d. the effective height of the receive site, prop.he(1), is set to be equal to 
prop.hg(1) + pfl(np+2) – zb, but only if pfl(np+2) > zb.  If  pfl(np+2) is 
not > zb, then prop.he(1) is set to be equal to prop.hg(1). 
 
Therefore prop.he(1) is set to be equal to prop.hg(1), and if the existing 
ground height of the receive site, pfl(np+2), is above the average elevation 
height at the receive site, zb, the difference in height between the average 
receive site elevation height and the ground height is also added to 
prop.he(1). 
 

Note:  The procedures in steps 15 and 16 do for a trans-horizon path what the 
procedure in step 10 does for a line-of-sight path.  Therefore, the note in step 10 
about the October, 2004 comments of Hammett & Edison to the FCC, regarding an 
error in the code, also applies to the code in steps 15 and 16.  
 
Line 1343: else 
                   { 
  z1sq1(pfl,xl[0],0.9*prop.dl[0],za,q); 
  z1sq1(pfl,prop.dist-0.9*prop.dl[1],xl[1],q,zb); 
  prop.he[0]=prop.hg[0]+FORTRAN_DIM(pfl[2],za); 
  prop.he[1]=prop.hg[1]+FORTRAN_DIM(pfl[np+2],zb); 
        } 
    

54.   The value of prop.mdp, the mode of the propagation model, is set to be equal to 
– 1, indicating point_to_point mode, and the value of propv.lvar, the level to 
which coefficients in AVAR must be redefined, is set to be equal to the greater 
value of either propv.lvar or 3.            

  
Line1351: prop.mdp=-1; 
      propv.lvar=mymax(propv.lvar,3); 
 

55.   An if statement is initiated, stating that if mdvarx, a variable representing the 
mode of variability, is greater than zero, (zero representing the single message 
mode), then the value of prov.mdvar is set equal to the value of mdvarx, and the 
value of propv.lvar is set to the be equal to the greater value of propv.lvar, or 4.    

 
Line 1354:      if (mdvarx>=0) 
  { 
   propv.mdvar=mdvarx; 



   propv.lvar=mymax(propv.lvar,4); 
  } 
 

56.  An if statement is initiated, stating that if klimx, the climate variable, is greater 
than zero, the value of propv.klim, the climate code, is set to be equal to the value 
of klimx, and the value of propv.lvar, which may have been set in step 18 above, 
is reset to be equal to 5.  

 
Line 1360:        if (klimx>0) 
  { 
   propv.klim=klimx; 
   propv.lvar=5; 
  } 
 
Note: for more information re: lvar, mdvar, and klimx, see “A manual for ITM, “Irregular 
Terrain Model”, available at http://flattop.its.bldrdoc.gov/itm/itm_man.txt. 
    

57.  Finally, we arrive at the climax; calculating the Longley-Rice path loss.  The 
subroutine then calls lrprop with inputs 0.0, array prop, and array propa;    

 
Line 1366:  lrprop(0.0,prop,propa); 
                  } 
 
 lrprop returns the reference attenuation, aref.  This is the “answer”, the amount of 
loss, in db, in the rf signal level between the transmitter and the receiver. 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Chapter 8: Hzns 
 
HoriZoNS subroutine hzns 
 
Note: Used with point-to-point mode.  Called by qlrpfl, mid-routine.  
 
From ITMD Sections 44 and 47: 
 
Background; Part I: Tech Note Section 6.4, Equation 6.15: 
 
NBS TN101 defines “launch angles” for the signal path line as it leaves the transmitter 
site, and as it arrives at the receive site.   These launch angles, described as θet, the 
angular elevation of the transmit horizon ray, and θer, the angular elevation of the receive 
horizon ray, may be determined by field survey or from a terrain profile plot, but are 
usually computed using: 
 
   θet = [(hLt − hts) / (dLt )] − (dLt/2a) and θer = [(hLr − hrs) / (dLr )] − (dLr /2a)  [TN101 6.15] 
 
 where: 

hLt, hLr  are the heights of the horizon obstacle (or obstacle peaks), above 
mean sea level 

hts, htr   are antenna elevations above sea level, (i.e. effective height of 
antenna above ground level plus the ground elevation height above 
mean sea level)   

dLt, dLr  are the distances from the terminals (the transmit site and the  
receive site) to the horizon (obstacle peak). 

a  the effective earth’s radius ( utilized in the c++ code as gme, the 
effective earth’s curvature, where gme is equal to 1/a.)   

 
From the NBS TN101, Volume I, Section 6.4, note that it states:  “As a general rule, the 
location of a horizon obstacle is determined from the terrain profile by using [TN101 
6.15] to test all possible horizon locations.   The correct horizon point is the one for 
which the horizon elevation angle θet or θer is maximum.  When the trial values are 
negative, the maximum is the value nearest zero.” 
 
Background; Part II: A mathematical proof for the conversion of a measurement of the 
length ratio of the non-hypoteneuse sides of a right triangle, to an angle measured in 
radians.  
 
How do we convert θ, a.k.a. th, calculated as a vertical to horizontal ratio in rectangular 
co-ordinates, to radians?   There are 2π radians in a full cycle, or 360o.  A radian is 
defined as the angle subtended at the center of a circle by an arc of circumference that is 
equal in length to the radius of the circle.  Draw this construct on a circle, with one radii 
of length r on the horizontal plane, and a distance of r on the circumference between the 



two radii.  Now draw a vertical line from the point where the non-horizontal radii touches 
the circumference of the circle, to a point perpendicular to the horizontal radii, forming a 
right triangle. The radius then becomes the hypotenuse of a right triangle with an angle, 
subtended at the center of the circle, between the two radii, of one radian, or 57.2958 
degrees.  The length of the vertical line is then equal to the sine function of the angle 
θ, which is equal to the ratio of the length of the vertical line to the length of the 
hypotenuse of the triangle, which is equal to r.  So we can now obtain the length of the 
vertical line by multiplying sin θ by the hypotenuse length, r. This results in the equation: 
 
    V = (sin θ) * r   
 
The length of the horizontal line is then equal to the cosine function of the angle θ, which 
is equal to the ratio of the length horizontal line of the triangle to the length of the 
hypotenuse of the triangle, which is equal to r.  So we can obtain the length of the 
horizontal line by multiplying cos θ by the hypotenuse length, r. This results in the 
equation: 
    H = (cos θ) * r   
 
We can now obtain the ratio of the vertical length to the horizontal length by dividing the 
equation for Y by the equation for H. and canceling out the “r” terms:  
 
   V/H = [(sin θ) * r] / [ (cos θ) * r ]  =  (sin θ)/(cos θ)  
 
In trigonometry, by definition, the tangent function is: tan θ =  (sin θ)/(cos θ), so the 
equation becomes:  
   V/H =  (tan θ)  
 
Here we will refer to the units as radians, as in c++ code, the trigonometric functions 
report out in radians, not degrees.  This can be used to convert from the angle in radians, 
to the ratio used for the take-off angle in the code, but we also need to know how to 
convert from the vertical-distance-to- horizontal-distance ratio (V/H ratio) used for th, to 
radians.  For this we use the arc tangent (a.k.a. tan-1) subroutine function:   
 
   atan (V/H) = θ , in radians (rads) 

 
These conversion ratios will be used below.    
 
Subroutine Call inputs: 
 
pfl terrain elevation profile array, starting at tx, ending at rcvr, following great 

circle path, with: 
  pfl[1] =enp, the number of increments 
  pfl[2] = xi, distance per increment  
  pfl[3] = z(0), the transmitter tower base AMSL, or elevation height 
  pfl[[np+3] = z(np), the receive location AMSL, the last elevation. 
 



Inputs from (and later outputs to) prop_type &prop structure, consisting of: 
(All structure elements are listed; not all used by hzns.) 
  aref the reference attenuation 
  dist total propagation path distance  (in km?) 
  hg(0) transmitter site radiation center above ground level (RCAGL). 
  hg(1) receive site radiation center above ground level (RCAGL). 
  wn the wave number  = freq. in MHz/47.7 MHz*m.; units in 1/meters. 
  dh delta H, (∆h), the terrain irregularity factor  
  ens refractivity of the atmosphere at sea level 
  gme      effective earth curvature,  (actual + refraction) 
  zgndreal      resistance component of earth impedance  
  zgndimag    reactive component of earth impedance 
  he(0)       effective height of transmit antenna   
  he(1) effective height of receive antenna 
  dl(0) transmitter antenna horizon (or highest “visible” obstacle) distance  
  dl(1) receive antenna horizon (or highest “visible” obstacle) distance 

the(0)  take off angle, at transmit terminal, from the antenna to the 
transmit horizon or highest “visible” obstacle.  

the(1)  take off angle, at receive terminal, from the antenna to the receive 
horizon or highest “visible” obstacle.  

  kwx the error indicator value, a.k.a. errnum, or error number 
mdp     the mode of propagation model used.  The mdp mode code is:  

   - 1 point to point mode 
     1  initializing area prediction mode 
     0  area prediction mode has initialized and is continuing 
 
defines private, or local, arguments:  
 
wq “false” if q is less than zero during for loop; (true=entire path is Line of 

Sight.) 
np  number of points in pfl elevation array  
xi  increment distance between points in pfl elevation array  
za transmitter site radiation center height above mean sea level (RCAMSL), 

in meters. 
zb  receive site antenna center height above mean sea level in meters. 
qc  equal to ½ of the effective earth curvature (gme); units in 1/meters 
q utility variable; starts as half of the effective earth curvature times the path 

distance, is redefined several times to represent the working variable at the 
moment. 

sb distance, in meters, from receive site to elevation point being studied in 
the for loop 

sa distance, in meters,  from transmit site to elevation point being studied in 
for loop 

 
 
This subroutine: 



58. Defines np, number of points, to be equal to pfl [0]. 
 
Line 1067: np=(int)pfl (0); 
 

59. Defines xi, increment distance, in meters/increment, to be equal to pfl [1]. 
 
Line 1068: xi=(int)pfl (1); 
 

60. Calculates za to be equal to the transmitter site ground elevation height, pfl[2], 
added to prop.hg[0], the transmitter site radiation center height above ground 
level (RCAGL).  za becomes the transmitter site radiation center height above 
mean sea level. (RCAMSL).   [Note: for dual database use, prop.hg must be 
adjusted to compensate for the height difference between the pfl array database 
and the ground level database, and may be a negative number.]    

 
Line 1069: za=pfl[2] +prop.hg[0] 
 
 

61. Calculates zb, the receive site reception center above mean sea level, using pfl 
[np+2], the last elevation point, and prop.hg[1], the receive site height above 
ground level.  [Note: for dual database, prop.hg must be adjusted to compensate 
for the height difference between the pfl array database and the ground level 
database, and may be a negative number.]    

 
Line 1070: zb= pfl[np+2] +prop.hg[1] 
 
 

62. Calculates qc , to be equal to ½ of gme, the effective actual earth curvature.  The 
constant gme, (a.k.a. prop.gme), equal to 157e-9 /meter, is the inverse of earth’s 
radius.  

 
Line 1071:  qc=0.5 *prop.gme 
 

63. Calculates q to be equal to qc, half of the effective earth curvature, times 
prop.dist, the propagation path total distance. 

 
Line 1072: q=qc*prop.dist; 
 

64. Presets prop.the[1] , the receive antenna angle of departure toward the horizon, to 
be equal to the height of the receive antenna above the height of the transmit 
antenna, divided by the path distance.   If the receive antenna is below the 
transmit antenna, this will be a negative number.  Provides the change in height 
between the receive antenna and transmit antenna divided by the path distance, or 
the ratio of difference in height to the path distance. 
Units should be meters for h and qc, meters for prop.dist. 

 



Line 1073: prop.the[1] =(zb-za)/prop.dist 
 

65. Presets prop.the[0] to be equal to prop.the[1] (see 7. above)  less q (see 6. above). 
 

If the transmit antenna is below the receive antenna, this will be a negative number.  
Calculates prop.the[0], the  transmitter take-off angle,  to be the change in height 
between the transmit antenna and receive antenna divided by the path distance, less 
half of the path distance divided by the effective earth radius, or: 
 

The[0]=  difference in height between tx and receiver −    0.5∗total path distance_             
   total path distance               effective earth radius 

 
[TN101 6.15a] Units should be in radians.  But the first term is in meters of height 
per meter of distance. 

 
Line 1074: prop.the[0] =prop.the[1] -q 
 

66. Recalculates prop.the[1] to be equal to the negative sum of prop.the[1] (see 7. 
above)  and q (see 6. above), or: 

 
 The[1]=  difference in height between receiver and tx,− 0.5∗ total path distance
    total path distance         effective earth radius 
 

   [TN101 6.15b] Units should be in radians.  But the first term is in meters of height 
per meter of distance. 
 
Line 1075: prop.the[1] =-prop.the[1] –q 
 
Note:  Either the[1] or the[0] will be negative, indicating which site is lower, unless they 
are equal, indicating that the transmitter is the same height as the receiver.  However, 
reportedly, the[0] = the[1] may cause a calculation problem later. 

 
Here we have two take-off angle calculation problems, but these are not due to the 
specific cause claimed by Hammett and Edison in their 2004 comments to the FCC 
regarding the use of Longley Rice for TV reception prediction. 
 
The calculation problems trace back all the way to Tech Note 101, Section 6.4; and 
relates to equation [TN101 6.15].   Of the two, the first problem appears to come 
from not keeping track of units, especially when mixing co-ordinate systems, and the 
second one to an omission.  The omission is a missing equation; a separate version of 
[TN101 6.15] that applies when the path is no longer line-of-sight.   
 
Problem I. The first term of the equations in 6.15 is calculated as a vertical distance 
change over a horizontal distance change ratio, in rectangular co-ordinates over 
theoretical flat earth.  But TN101 specifies, in Section 6 in the paragraph preceding 
[TN 6.15], that all angles are to be in radians unless otherwise specified.  



 
The second term, (1/2*path distance/effective earth’s radius), adds the angle 
reduction due to the curvature of the earth and refractivity; it divides a partial 
circumference of a circle by a radius, and is therefore, by definition, in polar 
geometric co-ordinates, resulting in output units in radians.  
 
 For a smooth earth model calculation, this is an approximation that works fine, as 
the error at a smooth earth horizon distance, from not converting the term: 
(distance in height between terminals/total path distance) to radians, does not show 
up until the eighth decimal place.   But for Irregular Terrain Model calculations 
with a nearby obstruction, or take off angles calculated at the base of a tall tower, 
skyscraper, or mountain on which is located a transmit terminal, the error becomes 
significant.   
 
The calculation of the line-of-sight take-off angles can be corrected by modifiying 
one line: 
 
Line 1074: prop.the[0] =prop.the[1] -q 
 
 To become: 
 
Line 1074: prop.the[0] =atan(prop.the[1]) -q 
 
As this correction will carry forward into the calculation of both the transmit 
terminal and receive terminal line-of-sight take-off angles in the next two steps. 
 
The second place we have to apply the corrections related to the Problem I errors, 
occurs when recalculating the take-off angle to the peak of an obstruction.  
 

67.  Calculates both prop.d1(0) and prop.d1(1) to be equal to the propagation path 
distance prop.dist.  If the path is line-of-sight, this will remain the default value. 

 
Line 1076: prop.dl[0] = prop.dist 
Line 1077: prop.dl[1] = prop.dist 
 

68. If the number of points is greater than 2; i.e. if there are more than two points, 
more than just the transmitter and receiver, 

 
Line 1079: if (np>2) 
 

69. The value of sa is preset to be equal to 0.0.  sa will represent the distance from the 
transmitter site to a elevation point being considered.  Setting sa to 0.0 starts the 
following loop calculation from the transmitter site.   

 
Line 1081: sa = 0.0. 
 



70.  A for loop is started that starts with i = 1 and continues until i is no longer less 
than the number of elevation points np.  This causes it to consider each elevation 
point individually along the path from the transmitter to the receiver. 

 
Line 1085: for (int i=1; i<np; i++) 
 

a. sa starts at 0.0 intervals, and is increased each pass by an amount equal to 
xi, the interval distance between elevation points, measured in 
meters/interval.  sb, which starts out equal to the path length, in meters, is 
decreased each pass by an amount equal to xi. sa then represents the 
distance between the transmit terminal and the elevation point being 
studied, with units in meters, and sb the distance, in meters, between the 
elevation point being studied and the receive terminal. 

 
Line 1087: sa+=xi 
Line 1088: sb-=xi 
 

b. q is reset to be equal to pfl[i+2], the elevation point height being studied 
on this loop, less two reduction adjustments:  

(1) the effective curvature of the earth (actual + refraction) between 
the transmitter and the point being studied, (qc*sa), is added to 
the take-off angle.  In calculating the take-off angle above, this 
term was subtracted; so adding it here removes the effective 
earth’s curvature adjustment.  (The effective earth’s curvature 
adjustment combines the actual earth’s curvature and refractivity 
adjustments.) This leaves the term (qc*sa+prop.the[0]) 
representing the vertical to horizonal ratio of the take-off angle 
over theoretical flat earth from the transmit terminal to the 
horizon.  Multiplying this term by sa, gives us the vertical 
distance change of the terminal to horizon take off angle (over 
theoretical flat earth) from the transmit terminal to the 
obstruction.    

(2) the transmitter elevation above mean sea level (za).  
 
This should leave q representing the vertical distance change, over a 
theoretical flat earth at the obstruction, between a theoretical line running 
from the transmit terminal antenna to the receive terminal antenna or horizon 
where it crosses the possible obstruction location, to the top of the elevation 
height at the interval location being considered in the for loop.  If q is greater 
than zero, there is an obstruction at this location; and the vertical distance q 
represents the vertical distance change at the obstruction that must be added to 
the horizon take-off angle to compute the take off angle from the terminal to 
the peak of the obstruction.   
 

Line 1089: q=pfl[i+2]−((qc*sa+prop.the[0])*sa) − za; 
 



The second correction required, which is related to the first problem, occurs here, 
when recalculating the take-off angle to the peak of an obstruction.  In line 1089, we 
need to recover the vertical height/horizontal height ratio that was converted to 
radians in our correction on line 1074. So, after making the correction discussed in 
Step 9, it is necessary to also adjust line 1089 to read: 
 
Line 1089: q=pfl[i+2]−(tan(qc*sa+prop.the[0])*sa) − za; 
 
 
Before proceeding, a discussion of  Problem II, the omission, is necessary.   Equation 
[TN101 6.15], even after correction for units conversion, is still only valid for a line-
of-sight calculation.  As a Irregular Terrain Model equation, it is a poor 
approximation in that it assumes, on finding one obstruction, that the obstruction is 
approximately in the center, and that the horizon distances are approximately 
equal, an assumption only generally valid for a smooth earth calculation or the 
special case of one, mutually visible obstruction, approximately in the middle of the 
path.   When the path length extends beyond the mutual horizon, or more than one 
obstruction is found, equations [TN101 6.15] start to miscalculate the effective earth 
curvature adjustment.   While an attempt has obviously been made to convert 6.15 
from a line-of-sight equation to a beyond-the-horizon-and/or-obstruction equation 
by replacing total path length, DL, with DLt, the transmit terminal horizon distance, 
and DLr, the receive terminal horizon distance, and two of the terminal heights with 
the obstruction height, the critical major change that occurs at the horizon or first 
obstruction was missed.   
 
I noticed the increase in miscalculation this causes past the first obstruction, in the 
late 1980’s, in the commercial Longley-Rice software I was using then; but only now 
do I know why. 
 
It has to do with the ½ in the second term, the effective earth curvature adjustment.  
As long as the path is line-of-sight,  DL  = DLt  = DLr.   And DLt  + DLr. =  2 * DL .  For 
line of sight, the receive terminal is the end point for the transmitted signal; the 
reverse is true for the receive terminal, and the path length is the same distance. 
So approximately ½ of the effective earth curvature adjustment is applied to the 
transmitter end of the take-off angle calculation, and the other ½ is applied to the 
receive end. 
 
But when the path length reaches to where the curvature of the earth starts to act as 
an obstruction, or an obstruction breaks the line of sight path,  DLt  and DLr. 
suddenly shorten by approximately ½, and the second equation changes to DLt  + DLr. 
=  DL.    When multiple obstructions occur, or the path length extends beyond a 
mutual horizon, the lengths DLt  and DLr become independent, probably do not equal 
each other, and  the second equation changes again to be:  DLt  + DLr. <  DL.   
 
Therefore, [TN101 6.15] must adapt to these changes. 
 



The simplest practical way of doing this is to say that 6.15, with the units correction 
shown, applies only for a line-of-sight path, and should revert to this form, re-
designated 6.15a: 
 
For when: DL  = DLt  = DLr.  or  DLt  + DLr. =  2 * DL   (Line-of-sight test) 
 
   θet = [atan((hrs − hts) / (dL ))] − (dL/2a) and θer = [atan((hts − hrs) / (dL))] − (dL /2a) 
   

[TN101 6.15a, corrected and modified for line-of-sight path application only] 
 
 
Here we first state equation 6.15b, as corrected and modified for use on beyond line-
of-sight paths, only:   
 
For when: DL  > DLt  + DLr.     (Beyond line-of-sight test) 
 
   θet = [atan((hLt − hts) / (dLt ))] − (dLt/a) and θer = [atan((hLr − hrs) / (dLr ))] − (dLr /a)   

 
[TN101 6.15, corrected and modified for beyond line-of-sight paths only] 

 where: 
hLt, hLr  are the heights of the horizon obstacle (or obstacle peaks), above 

mean sea level in meters. 
hts, htr   are antenna elevations above sea level, (i.e. effective height of 

antenna above ground level plus the ground elevation height above 
mean sea level), in meters.   

dLt, dLr  are the distances from the terminals (the transmit site and the  
receive site) to the horizon (obstacle peak), in meters. 

a  the effective earth’s radius ( utilized in the c++ code as gme, the 
effective earth’s curvature, where gme is equal to 1/a.) Units: 1/m 

 
 
Here we have another calculation problem, related to both Problems I and II.  The 
prop.the[0] used at line 1093 was converted from flat earth to being calculated over 
the surface of a great circle, by multiplying it by an effective earth curvature term 
(1/2 path distance/a), or (1/2 path distance*earth*gme), that used a path distance = 
the smooth earth horizon distance.  But the new angle stops at the obstruction.  The 
path distance of the new angle, therefore, is equal to the value momentarily held by 
sa.  The effective earth curvature adjustment must now be based on this different 
distance, sa, instead of the original, horizon distance, prop.dist. 
 
So on line 1093, the calculation of the new angle suffers from two problems; the 
term q/sa is in V/H ratio, not radians; and the effective earth curvature term that 
has been subtracted at line 1093 was for the terminal to smooth earth horizon 
distance, not the new distance from the terminal to the obstruction. 
 



There is a also a weakness in this method of computation, especially when using a 
detailed elevation database; the multitude of calculations that occur as the for loop 
climbs the transmit-terminal-facing face of each successive obstacle, adding multiple 
very tiny angles to prop.the to recompute the take off angle for each interval as 
successively higher points on the obstruction are considered, affect the accuracy of 
the final result.  Because of this, while we are fixing the major problems here, we 
will also improve the calculation; it is far more accurate to compute the take off 
angle in flat-earth rectangular co-ordinates, then convert to radians and add the 
effective earth curvature adjustment (in radians), for each successive change in the 
take-off angle as the for loop cycles.  And therefore, for correct calculation of the 
effective earth curvature on the second and higher for loops, we must insert, on the 
next line: 

 
(new insert) Line 1090:  qc = prop.gme  

 
c. (1). If a point is reached during the for loop where q is greater than 0.0, 

indicating that either the actual horizon, and/or a first diffraction point as 
seen from the transmitter, has been reached, prop.the[0], the transmitter 
take-off angle, is increased by an amount equal to q/sa, to direct it toward 
the top of the horizon point and/or diffraction point, and prop.dl[0] is 
made equal to sa, the path length between the tx and elevation point being 
studied, now the transmitter horizon/first diffraction point. The Boolean 
argument wq is set to “false”, indicating that the entire path will NOT be a 
line-of-sight study. 

 
Line 1091: if q>0.0 
Line 1093: prop.the[0]+=q/sa; 
Line 1094: prop.dl[0]=sa; 
Line 1095: wq=false; 
 
From [TN101 6.15b] we need to calculate:  
 
the[0]= atan((obstacle hgt-transmit hgt)/tx to obst. distance) −  tx to obst. dist                                        

    Eff. earth radius 
 
For the vertical distance difference in flat earth rectangular co-ordinates, subtract 
the transmit terminal height above mean sea level, from the terrain height in meters 
AMSL at the obstacle location. 
 
where: 

za transmitter site radiation center height above mean sea level 
(RCAMSL). 

qc equal to ½ of the effective earth curvature (gme), (or, later, = gme) 
q utility variable; here representing: the vertical distance change, over a 

theoretical flat earth at the obstruction, between the a line running 
from the transmit terminal antenna to the receive terminal antenna or 



horizon where it crosses the possible obstruction location, to the top of 
the elevation height at the interval location being considered in the for 
loop 

sa distance from transmit site to elevation point being studied in for loop 
pfl[i+2]  elevation height at sa. 
 

Since this calculation only occurs for non-line of sight situations, and taking our 
cues from: Steps 7, 8, and 9, and [TN101 6.15b] we replace: 
 

Line 1093:   prop.the[0]+=q/sa;  
 
with    

 
 Line 1093:  prop.the[0]=atan((pfl[i+2]-za)/sa)–sa*prop.gme        [TN101 6.15b 
corrected]  
 
We then have to apply the same correction later for the receive take off angle. 
 

(2). If wq is not true, (i.e. if wq is “false”, indicating a path length long 
enough to reach the horizon or a first diffraction point), q is set to be equal to 
the additional vertical height to be added to the take-off angle equation 
[TN101 6.15], to redirect the receive site take-off angle to the peak of the 
obstruction found.   

 
Here we must reset the value of qc. For correct calculation of the effective earth 
curvature on the second and higher for loops, we must insert, on the next line: 

 
Line 1090:  qc = prop.gme  

 
In line 1100, we again need to recover the vertical height/horizontal height ratio that 
was converted to radians in our correction in step 9.  So, after making the correction 
at Step 8, it is necessary to also adjust line 1100 to read: 
 
Line 1100: q=pfl[i+2]−(tan(qd*sb+prop.the[0])*sa) - za; 

   
And so that the vertical angle will correctly be calculated on the 2nd and higher for 
loop passes, we must add the following: 
 
In the declaration statements, qd must be added to line 1065:  
 
Line 1065:  double xi, za, zb, qc, q, sb, sa, qd;  
 
The value of qd must be defined by adding on line 1078:  
 
(added to blank line) Line 1078: qd = qc 

 



Then add on line 1101, following the line: q=pfl[i+2]−(tan(qd*sb+prop.the[0])*sa) - za; 
 

(added to blank line) Line 1101:  qd = prop.gme  
 

Line 1098: If (!wq)  
        {   
Line 1100:    q=pfl(i+2) –(qc*sb+prop.the[1])*sb-zb; 

 
 

 (2)(a) As the if loop sweep from sa to sb continues, at any time that q is 
then greater than 0.0, indicating a horizon, or diffraction point as seen from the 
receive site, prop.the[1], the receiver take-off angle,  is increased by an amount 
equal to q/sb, to recalculate it to the obstruction peak, (or completely recalculated 
if corrected as stated above) and prop.dl[1] is made equal to sb, indicating that the 
receiver horizon is at the obstruction peak, and the receive horizon distance is the 
distance from the receive site to the last obstruction peak visible from the receive 
antenna.   

 
At the end of the if loop, prop.the[1] should then indicate the take-off angle to the 
most distant obstruction peak “visible” (to the RF signal)  from the transmitter 
site, and prop.dl[1] should indicate the distance to the most distant obstruction 
peak visible from the receive site.  

 
 Line 1102: If (q>0.0)  

Line 1104: prop.the[1] +=q/sb; 
Line 1105: prop.dl[1]=sb; 

 
As we did in step 13, we must also replace the calculation on Line 1104:  
 
where: 
  

zb receive site antenna center height above mean sea level (RCAMSL). 
qd equal to ½ of the effective earth curvature (gme) (or, later, = gme) 
q utility variable; here representing: the vertical distance change, over a 

theoretical flat earth at the obstruction, between a line running from 
the receive terminal antenna to the receive terminal antenna or 
horizon where it crosses the possible obstruction location, to the top of 
the elevation height at the interval location sb. 

sb distance from receive site to elevation point being considered. 
pfl[i+2]  elevation height at sb. 
 

Line 1104 then becomes:  
 
 Line 1104:  prop.the[0]=atan(zb -(pfl[i+2])/sb)-sb*prop.gme         

[TN101 6.15 corrected] 
71. return or endpoint for for loop. 



 
72. hzns returns: 

Outputs to prop_type structure: 
a. prop.the[0] horizon take-off angle from transmitter  
b. prop.the[1] horizon take-off angle from receiver 
c. prop.dl[0] distance from transmitter to horizon (or 1st obst.) 
d. prop.dl[1] distance from receiver to horizon (or last obstacle). 

 
 
 
 
Finally, a note regarding a famous protest: 
 
Hammett and Edison, in their October of 2004 comments submitted to the Federal 
Communications Commission (FCC) in CS Docket 98-201, regarding the use of 
Longley-Rice in calculating Grade B TV Signal Coverage, stated in paragraph 20: 
 
 “This ongoing work has convinced us that the implementation of the L-R model is even 
more flawed than had been originally suspected. For example is has come to light that the 
OET-69 software calculates the depression angle to a calculation point using the sources 
height above ground, not its height above sea level.   This coding mistake by itself will 
introduce errors of perhaps 10-20 dB in the calculation results.”   
 
The code studied here does not, in and of itself, contain this error. In step 3 above, za, the 
transmitter height used for the angle calculations, is the transmit antenna height above sea 
level, determined by adding the transmitter site ground elevation height, pfl[2], to 
prop.hg[0], the transmitter site radiation center height above ground level (RCAGL). The 
same is true of zb, the receive antenna height above sea level. So if the original claimed 
source of the error spoken of by Hammett and Edison still exists, it exists in the data 
preparatory subroutines written for OET-69 to prepare the information for the ITM 
subroutines, not in the ITM 1.2.2 code, including the new version 7, publicly released by 
the NTIA since 2003.   
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Chapter 9: Dlthx 
 
Delta  h  (experimental) subroutine 
 
Note: Used with point-to-point mode.  Called by qlrpfl, mid-routine.  
Calls mymin, mymax, assert, zlsql, qtile. 
 
Used to find dh, (a.k.a. delta h) the terrain irregularity factor. 
 
Computes the terrain irregularity parameter dh from the profile elevation array pfl 
between points located at  x1 and x2.  x1 is defined as a distance from the transmitter site 
to the start point of a path of elevation points considered; x2 is defined as a distance from 
the transmitter site to the end point.  Both x1 and x2 must be specified in meters. 
 
Please note that the qlrpfl subroutine, and the dlthx, hzns and zlsq1 subroutines that 
are called during qlrpfl, were intended to be experimental early versions of L-R 
software.  They are still in use today, with few modifications or corrections.  The 
ITM Manual states:   
 

“It should be noted that the original ITM is silent on many of the details for 
defining some of the path parameters.  This is particularly true of the 
effective heights HE, and, to some lesser degree, of the terrain irregularity 
parameter DH.  The effective height, for example is defined as the height 
above the “effective reflecting plane,” and in the past the investigator has 
been urged to use his own best judgement as to where that plane should be 
placed. The subroutine QLRPFL, in trying to automate the definition of all 
parameters, has been forced to define explicitly all missing details. It has 
done this in a way that seems reasonable and in full accord with the intent of 
the model.   One should not, however, conclude that these efforts are 
completed. Hopefully, better results are obtainable.”       

 
Background on Delta H, (∆h), the Terrain Irregularity Parameter  
 
Also described as “∆h, the interdecile range of elevations between the two points x1 and 
x2”.  The interdecile range is a specific interquartile range; it is computed as the 
difference between the 10th and 90th percentiles. It comprises the middle 80% sample of 
the population: in this case, a set of elevation values derived from the elevation data 
contained in the pfl array.   The term x1 is defined as a distance from the transmitter site 
to the start point; x2 is defined as a distance from the transmitter site to the end point. 
We find by studying the ∆h, or delta h, used in the irregular terrain model, that the 
concept and calculation does not closely follow the definition of the terrain roughness 
factor, σh, specified in Tech Note 101.  
 
In Tech Note 101, on page 5-9, it states:   



 
“5.2.2. The terrain roughness factor, σh.  The τερραιν roughness factor 

σh in (5.1) is the root-mean-square deviation of modified terrain elevations, yi, 
relative to the smooth curve defined by (5.16), within the limits of the first Fresnel 
zone in the horizontal reflecting plane.  The outline of a first Fresnel zone ellipse 
is determined by the condition that: 

 
   r11 + r21 =   r1 + r2   +  λ /2  
Where:     
 

r11 + r21  is the length of a ray path corresponding to reflection from a point on  the 
edge of the Fresnel zone,  

 
r1 + r2     is the length of the reflected ray for which angles of incidence and 
reflection are equal. 
 

Norton and Omberg [1947] give general formulas for determining a first Fresnel zone 
ellipse in the reflecting plane.  Formulas are given in annex III for calculating distances 
xa and xb  from the transmitter to the two points where the first Fresnel ellipse cuts the 
great circle plane.”    
 
Later, on page 5-13, it states:  “the terrain roughness factor σh, (in Tech Note 101 here 
designated by a lowercase sigma sub h), is the root-mean-square deviation of modified 
terrain elevations relative to the curve y(x) within the limits of the first Fresnel zone in 
the horizontal reflecting plane.  The first Fresnel ellipse cuts the great circle plane at two 
points, xa and xb kilometers from the transmitter.  The distances xa and xb may be 
computed using equations (III.18) or (III.19) to (III.21) of annex III.” 
 
The root-mean-square is the square root of the average of the squares of a set of numbers.  
If we have a set of values in an array: x1, x2, x3,…,xn,  the root-mean-square can be 
computed, using a for loop, as the square root of the sum of the squared array values 
divided by n, or:  
 
 xrms  =  (( x1

2 + x2
2  + x3

2 … + xn
2 )/n)1/2  

 
Deviation refers to the amount of difference between the value being considered and the 
arithmetic mean value.  One of the most important uses of the root-mean-square is to 
determine the standard deviation from the arithmetic mean.  The standard deviation from 
the mean is the root-mean-square of the deviations from the mean.   
 
In classical statistics, the formula for calculating the variance of an unknown population 
variance is:    
  σ2  = Σ(x  − µ)2     
      N 
Here the population parameter is abbreviated with the Greek letter sigma in lower case, 
the mean is a population parameter (mu), and the number of samples is represented with a 



capital N.   The term [x  − µ] represents the difference between the sample value (x) and 
the mean value µ; this term is the deviation of the sample. 
 
The standard deviation, σ, is simply the square root of the variance, or:  
 
   σ  = ((Σ(x  − µ)2)/Ν)1/2 

 
Here we are using a sample of the total population.  For calculating statistics of a sample 
of the population, statisticians indicate that the mean is of a sample population by 
replacing µ with the arithmetic mean x, and they decrease the denominator by 1, to 
account for the percent probability that a wider deviation exists in the population than in 
the sample of the population. The formula then becomes: 
 
  σ  = ((Σ(x  − x)2)/(n))1/2 

 
Where n =  (N  − 1) 
 
If the arithmetic mean x is equal to: 
 

x = (x1 + x2
  + x3 … + xn )/n, 

 
then the standard deviation s can be computed, using a for loop, as: 
 
 s  =  (((x1 - x)2 + (x2 - x)2  + (x3 - x)2… + (xn - x)2 )/n)1/2 . 
 
The terrain roughness factor is the root-mean-square deviation of modified terrain 
elevations relative to the curve y(x) within the limits of the first Fresnel zone in the 
horizontal reflecting plane.  We can now see how to obtain the root-mean-square 
deviation of terrain height data taken from a selected part of the path between the 
transmitter and the receiver; the information is in the pfl array.  But what is meant by 
“modified terrain elevations relative to the curve y(x)”? 
 
In 5.2.1, a Curve-Fit to Terrain, found on page 5-8 of Tech Note 101, it states:   
 

“A smooth curve is fitted to terrain visible from both antennas.   It is used to 
define antenna heights h’1 and h’2, as well as to determine a single reflection point 
where the angle of incidence of a ray r1 is equal to the angle of a reflection of a 
ray r2 in figure 5.1.  This curve is also required to obtain the deviation of terrain 
heights used in computing Re in (5.1).  
 
First, a straight line is fitted by least squares to equidistant heights hi(xi) above sea 
level, and (xi )2 /(2a) is then subtracted to allow for the sea level curvature 1/a 
illustrated in figure 6.4.   The following equation describes a straight-line h(x) 
fitted to 21 equidistant values of hi(xi) for terrain between xi = x0 and xi = x20  
kilometers from the transmitting antenna.  The points x0 and x20 are chosen to 
exclude terrain adjacent to either antenna which is not visible from the other:” 



 
   h(x) = h + m(x – x )                                    (5.15a) 

 
Here, h is the arithmetic mean of the elevation heights, i.e. the average terrain height: 

             
h = ((h1 + h2

  + h3 … + h20 )/21   (5.15b, 1 of  3) 
 
x is the arithmetic mean of the distances from the transmitter site to the to x0 + x20, 
i.e. the distance from the transmitter site to the center of the x path:    

 
x  = (x0 + x20)/2     (5.15b, 2 of  3) 

 
    

m is the slope of the line.  To simplify the later calculation of the least squares 
solution, the slope is calculated with reference to an x co-ordinate referenced to 
the center of the x path.  If n is the number of elevation points, in this example 21, 
then (n-1) is equal to the number of intervals between the elevations points, equal 
in this example to 21 – 1 = 20. The center of this path of equidistant intervals is 
then at i = (n – 1)/2, or (21 – 1)/2 = 10.  So if we want to start a for loop 
calculation from the transmitter end of the path, we have to start at the 
recalibrated x path position, the interval closest to the transmitter site, in this 
example now equal to (i – 10).  So the slope calculation will start at i = 0 and 
proceed to i = 20, represented in the below calculation by i – 10, therefore 
calculating from –10 to +10.    

         
  m = 2 * (h1(i-10) + h2(i-10)  + h3(i-10) … + h20(i-10))     (5.15b, 3 of 3) 
    77 * (x20  - x0) 
  

This is a slightly different notation, but is still the same formula given in 5.15b, 
3rd of 3.    The derivation of the 2/(77*(77 * (x20  - x0))) set of terms is not 
explained in Tech Note 101; and provides a correct answer only if the number of 
increments equals 21.    

 
The derivation of a more universal version of this formula, which will work with 
any number of increments, is shown in the description of the subroutine zlsq1, 
which this subroutine, dlthx calls, in an attempt to perform this least-squares-fit-
to-a-line calculation.  Here, we will simply state that the version of the formula 
for the slope, m, which provides correct results for any number of increments, is:      

 
  m =   (h1(i-10) + h2(i-10)  + h3(i-10) … + h20(i-10)) 
        ((i0-10)2 + (i110)2  + (i2-10)2 … + (i20-10) 2) 
 

And is intended to be incorporated in a revised version of zlsq1, to be named 
zlsq2. 

 
After 5.15b, Tech Note 101 states:  



 
  “Smooth modified terrain values given by  
 
  y(x) =  h(x) -  x2 /(2a)      (5.16)     

 
will then define a curve of radius a which is extrapolated to include all values of x 
from x = 0 to x =d, the positions of the antennas.” 
 

Here, a represents the effective radius of the earth under the great circle signal path.  The 
- x2 /(2a) term accounts for the effective curvature of the earth; it adds the effective 
increase in terrain height due to the effective curvature of the earth, to the “flat earth” 
signal path average terrain line formula. Section 4 of Tech Note 101 describes a method 
of deriving the effective earth’s radius, a, from ns, the atmospheric refractive index at the 
surface of the earth, and ao, the actual radius of the earth. 
 
Note before reading further: The ∆h correction term defined by (6.12) in the next quote, 
mentioned after (5.17), is not the same ∆h we have previously discussed in this section.  
It is only distantly related to, and not the same as, the delta h (∆h) function calculated by, 
and result dlthxv provided by, subroutine dlthx. 
 
 
Continuing with Tech Note 101 after (5.16). it states:  
 
  “The heights of the antennas above this curve are: 
 
  h’1 =  hts  - h(0),       h’2  =  hrs  - h(d)    (5.17)     

 
If h’1 or h’2 is greater than one kilometer, a correction term, ∆h, defined by (6.12) and 
shown on figure 6.7, is used to reduce the value given by (5.17). 
 Where terrain is so irregular that it cannot be reasonably well approximated by a 
single curve, σh is large and Re = 0, not because the terrain is very rough, but because it is 
irregular.  In such a situation, method 3 of section 5.1 may be useful.”  
 
Now, on to the description of the subroutine. From ITMD Section 44: 
 
Call inputs: 
 
pfl terrain elevation profile array, starting at transmitter site and ending at 

receiver site, following great circle path, with: 
  pfl[0] =enp, the number of increments 
  pfl[1] = xi, distance per increment (in meters) 
  pfl[2] = z(0), the transmitter tower base AMSL, or elevation height 
  pfl[[np+2] = z(np), the receive location AMSL, the last elevation. 
 



&x1 x1, input from qlrpfl as xl[0], the start point of the section of the total path 
to be considered, defined as a distance (measured in meters) from the 
transmitter site; also an output.   

&x2 x2, output from qlrpfl as xl[1], the end point of the section of the total path 
to be considered, defined as a distance (in meters) from the transmitter 
site; also an output 

 
 
This subroutine declares the following private, or local, arguments:  
 
  Note: in this case, I am noting the argument types (int, and double, in this case) because 
this subroutine incorporates conversions between (int) and (double).   
 
Declared as type integers (int): 
 
np  number of points in pfl elevation array.  
 
ka equal to 1/10 of (8+length of the section of the total path to be  

considered), range limited to between 4 and 25. 
 
kb  equal to n- (ka+1). 
 
n number of intervals between the transmitter site and the end point of a 

path to be considered in this subroutine only. 
 
k  initially set to be one more than xa.  
 
j  counting variable in a for loop. 
 
 
Declared as type double decimal precision (double): 
 
d1thxv  calculated terrain irregularity parameter; output from dlthx. 
 
sn  one less than n.  The total path length, measured in increments, of path n. 
 
xa working variable related to beginning of test path; the value and definition 

of this variable changes as noted in the text, often completely redefined 
from use to use in various for and if loops. 

  
xb working variable related to end of test path; the value and definition of this 

variable changes as noted in the text, often completely redefined from use 
to use in various for and if loops. 

 
*s an array of elevation variables, partially derived from pfl. 
    



 
This subroutine: 
 

73. Defines np, number of points, to be equal to pfl [0], the number of increments in 
array pfl. 

 
Line 1249: np=(int)pfl [0]; 
 

74. Defines xa to be equal to xl/pfl [1], equal to x1(one, the transmitter site) divided 
by the increment distance, initially making double xa equal to the number of 
increments from the transmitter site to the start point of the section of the total 
path to be considered. 

 
Line 1250: xa=x1/pfl[1]; 
 

75. Defines xb to be equal to x2/pfl [1], equal to x2(receiver site) divided by the 
increment distance, initially making double xb equal to the number of increments 
from the transmitter site to the end point of the section of the total path to be 
considered. 

 
Line 1251: xb=x2/pfl[1]; 
 

76. Presets dlthxv=0.0 
 
Line 1252: dlthxv=0.0. 
 

77. if statement used as check; if (xb - xa<2.0), is true, indicating a path length too 
short to calculate dlthxv, it causes the program to exit, returning dlthxv = 0.0 . 

 
Line 1254: if  (xb-xa<2.0) 
Line 1255:  return d1thxv;  
 

78. Sets ka to be equal to 1/10 of (xb-xa+8), or 1/10 of (8+length of the section of the 
total path to be considered, measured in increments), then sets the range of ka to 
be between 4 and 25 increments.   

 
 Since ka is declared as an int, the data used to calculate its value must be int; but the 
declared local xb and xa are of type double.   The function, by stating (int) after the 
equal sign and before the calculation, forces (creates) an output that is (int).       
 
 

Line 1257: ka=(int)(0.1*(xb-xa+8.0));  
Line 1258: ka=mymin(mymax(4,ka),25); 
 

79. Sets value of n equal to (10 times ka) – 5; since ka is limited in range to between 
4 and 25, then n is limited in range to between 35 and 245 increments.  



 
NOTE:  THIS IS AN ARCHAIC, PROBLEM-CAUSING RANGE LIMIT FOR n, 
FAR TOO SMALL FOR TODAY’S 90 METER (3 ARC-SECOND), 30 METER (1 
ARC-SECOND) AND 10 METER ( 1/3 ARC-SECOND) PATHS, WITH 
THOUSANDS OF INTERVALS.  It limits n to 245 times 90 m, or 22 km, for 3 arc-
second database interval sizes, which should leave it marginally functional, but less 
than optimum, but it limits the maximum consideration to only 7.35 km for 1 arc-
second database all-points intervals, and 2.45 km for 1/3 arc second database all-points 
intervals.  The range limit must be able to handle long horizons, such as those from a 
tall tower or mountaintop transmitter site that can transmit over relatively flat land; an 
example being paths from transmitter sites atop Cheyenne Mountain that can transmit 
toward Denver.   
 
The FCC regulations for their version of [delta] h specifies a minimum 10 km, and up 
to a 50 km maximum, limit; the n limit of 7.35 km for 1 arc-second database all-points 
intervals, and 2.45 km for 1/3 arc second database intervals, are both below the 
minimum FCC limit for consideration.  
 
In continuing the comparison to the FCC’s terrain consideration rules, we find that 
FCC 47CFR73.7313 indicates that the consideration of terrain roughness extends from 
n = 10 to 50 km; i.e. the maximum length of the path to be considered was 50 km, the 
calculation was to be made using terrain information on the signal path starting at 10 
km and extending to the receive point, up to a maximum of 50 km.  No consideration 
was to be made for terrain roughness if the path was less than 10 km.  The length of n, 
being 10 times ka less 5, can only compare well with the 10 to 50 meter maximum 
range of the FCC’s delta h determination method, unless ka = 1, where n would = 5; 
since ka is range-limited to be not less than 4, this is not possible.  So let us look at 
another part of the FCC regulations; where a minimum number of 50 increments over 
the 40 km consideration path section are required.  Converting from paper maps to a 
digital database, this is 1.2 increments per km, equivalent to an 830-meter database, or 
roughly equivalent to, and therefore compatible with, the 900 meter GLOBE 30 arc-
second database utilized by the Windows version of the ITM (itm.exe), made available 
by NTIA.      
 
The maximum and minimum limits for ka, therefore, need to be set based upon the 
path lengths, not the number of intervals.  We only need to reset the maximum limit, as 
ka is calculated to be far less than xb. The maximum length of n, to be limited to 50 
km, or 50,000 meters, is dependent on ka, so we want to set ka to be a maximum of 
5,050 meters.  Distance in meters can be converted to intervals by dividing by pfl[1], the 
increment width, so: 
 
On Line 1245; add kmx, between k, and j on the int declaration line.   
 
Assuming the units of pfl[1] is meters/increment, in dlthx2, line 1258 should be 
replaced by:  
 



Line 1258r:      kmx=(int)(5000.5/pfl[1]) 
Line 1259r: ka=mymin(mymax(4,ka),kmx); 
 
Line 1258r sets the kmx, or ka maximum, to be the integer value of 5500.5 divided by 
the increment width, leaving kmx measured in increments.  Line 1259r replaces 25 
with kmx.  
 
 
END CORRECTION NOTE.   Returning to the discussion of dlthx; 
 
Line 1259: n=10*ka-5 
  

80.    Sets value of kb equal to n-ka+1 
 
Line 1260: kb= n–ka+1 
 

81. Sets value of sn equal to n-1, the total path length, measured in increments, of 
path n. 

 
Line 1261: sn=n-1,  
 

82.   Calls subroutine assert with input parameters (s=new double[n+2]) !=0).  
assert is a standard c function prototype that, in c++, returns an error message and 
aborts the program if the expression, in this case s=new double[n+2], is equal to 
zero, i.e. the expression is false.  Note the use of new to create and allocate 
memory for the s array, and of double to declare the s array values to be doubles, 
where n was declared as an integer (int).     So if n +2 = 0, the program aborts, 
returning an error message.  

 
Line 1262: assert (s=new double[n+2]) !=0) 

 
83. Sets value of array value s[0] equal to sn, which is equal to the length, in 

increments, of the path considered, also = (n – 1). 
 
Line 1263:  s[0]= sn    
 

84. Sets value of array value s[1] equal to 1.0 
 
Line 1264: s[1]=1.0 
 

85. Sets value of xb to be equal to (xb-xa)/sn, where: 
 
(xb, prior to step 13) = the number of increments from the transmitter site to the 
end point of the path considered. 
xa = the number of increments from the transmitter to the start point of the path 
considered. 



sn is the length of the path considered, measured in increments. 
 
So (xb-xa) is the length, in increments, of the path considered, and xb is redefined 
to be the length of the path considered divided by the length of the path defined 
by n, i.e. sn = n – 1, measured in intervals.  This makes xb equal to the ratio of the 
length of the “x” path to the length of the “n” path.   

 
Line 1265: xb=(xb-xa)sn 
 

86. Sets value of k equal to xa+1.0, equal to the number of increments from the 
transmitter to the start point, plus one.  The use of (int) after the equal sign allows 
and forces a calculation using (double) xa, to produce an integer result.  The value 
of xa is truncated, not rounded off, to zero decimal places, so 3.9 and 3.3 both 
would calculate as 3, i.e. if xa is 3.9, k = 3 +1 = 4, if xa is 3.3, k = 3 +1 = 4.   

 
 Line 1266: k=(int) (xa+1.0); 
 

87. Resets value of double xa by subtracting value of k.   The use of the (double) 
before k allows and forces a type double result to a calculation incorporating the 
integer (int) k.  Since k =  (xa +1), with the value truncated to zero decimal places 
by the double to integer conversion, this calculation will produce a double xa that 
is equal to the value of xa less the value of (xa +1) truncated to no decimal places, 
resulting in xa = a negative value, between -1 and slightly negative of zero.  The 
new xa value after the calculation on line 1267 is equal to the negative of the 
amount to the right of the decimal point of xa prior to the calculation on line 
1267. 

  
Line 1267: xa-=(double) k; 
 

88. Initiates for loop, starting with j=0, continuing until j=n; 
 
Line 1269: for (j=0, j<n; j++) 
 

a. A while loop is initiated within the for loop, running while xa > 0.0 and 
k<np.  When xa is greater than zero, it:  

(1) Subtracts 1 from xa. 
(2) Increments the value of k, increasing the value of k by 1. 

 
Line 1271: while (xa>0.0 && k<np) 
Line 1273:  xa-=1.0; 
Line 1274:  ++k 
 
The for loop then continues;  
 

b. It sets value of s[j+2) equal to pfl[k+2]+(pfl[k+2]-pfl[k+1])*xa,  
c. And then redefines the value of xa, this time equal to xa + xb. 



 
Line 1277: s[j+2]= pfl[k+2]+(pfl[k+2]-pfl[k+1])*xa 
Line 1278: xa=xa+xb 
 
An interesting sequence of events happens in this for loop.  The loop populates the s 
array elevation values in s array positions s[2] to s[n +1], i.e. s[ (n –1) + 2] with values 
derived from the values in the pfl loop.  Derived is the key word here; the values in pfl 
from pfl array locations pfl [k+2], with k incrementing approximately every 2nd s array 
increment, and proceeding toward location pfl [np –1], are being interpolated to fill a set 
of intervals equal to  (n –1), the number of intervals in path “n”, with interval widths 
equal to the intervals in path “n”.    
 
 

89. Subroutine zlsq1 is then called, with inputs (s , 0.0, sn) where: 
 

s is an array with values: 
s[0] = sn  (see 11. above) 
s[1] = 1.0  (see 12. above) 

       s[2….(n-1)] =  elevations calculated in for loop (see 16. above) 
        
      0.0  indicating that zlsq1 is to start at the s array elevation value stored in s[2]. 
      sn       which is equal to the length, in increments, of the path considered, also = 

(n – 1), indicating that zlsq1 is to continue considering the s array 
elevation values all the way to the value stored in s [n + 1], i.e. s ((n –
1)+2).  

     
Output values: 
 
      xa   now redefined as the z0, or value of average terrain height line at 

transmitter site. 
  

xb working variable; after xlsq1 called, is the z1, or value of average terrain 
height line at receiver site. 

  
90. zlsq1 then returns:  

 
xa = z0, the elevation value of the average terrain line at the transmitter site. 
xb = z1, the elevation value of the average terrain line at the receive site. 

   
91.    The value of xb is then again redefined to be equal to (xb-xa)/sn, or (the 

elevation value of the average terrain height at the receive site above the elevation 
value of the average terrain height at the transmitter site), divided by (n – 1).  

 
Line 1282: xb=(xb-xa)/sn   
 

92.    A for loop is initiated, starting at j=0; running until j is no longer less than n. 



 
Line 1284: for (j=0; j<n; j++) 
 

a. The loop first subtracts the value of xa from s[j+2], subtracting the 
average elevation height calculated by zlsq1 from the first elevation height 
in the s array, leaving as a value, only the amount of deviation, in meters, 
from the average height, stored in the each of the s array locations.  

 
In Tech Note 101, at 5.16, the term [–x2/(2a)], adding consideration of the effective 
curvature of the earth, is added to the straight line formula y(x) = h(x), and to the 
elevation heights, before the plotting of the terrain and calculation of the deviations.  
However, since here we are not plotting, and the deviations are being obtained by 
subtracting the straight-line formula results, (the value of xa as incremented by the for 
loop), from the terrain heights (found in the s array values prior to processing by this for 
loop), the effective curvature term would cancel out.  Therefore, the values of the 
elevation deviations obtained and stored in the s array will be the same with or without 
consideration of the effective earth radius.     

 
Line 1286:   s[j+2]-=xa 

 
b. It then adds the value of (double) xb to (double) xa.  As the loop advances, 

this causes the value of xa to proceed from the z0 value to the z1 value, 
following along the average elevation height line y= a + bx calculated by 
zlsq1.   

 
Here again this subroutine branches off from following Tech Note 101, specifically, the 
description of methodology and procedure specified for determining the terrain roughness 
factor, σh, described in Tech Note 101 at 5.2.2.  In its place, the subroutine determines a 
related value, described as a delta h  [∆h ].  First, note that this ∆h is NOT the same as the 
∆h correction term defined by Tech Note 101 at (6.12), a term that is to be applied only 
when the effective heights of the transmitter and/or receiver are greater than a kilometer 
above sea level.  It is related to, but not the same as, the delta h (∆h) function calculated 
by, and result dlthxv provided by, subroutine dlthx. 
 
 
The subroutine dlthx is described in Appendix A of NTIA Report TR-82-100, “A Guide 
to the Use of the ITS Irregular Terrain Model in the Area Prediction Mode”, as:  
 

“Computes the terrain irregularity parameter dh from the profile pfl between 
points at x1 [less than] x2.  

 
And in the ITMD, dlthx is described as:       
 
Using the terrain profile pfl we find ∆h, the interdecile range of elevations between the 
two points x1 and x2”. 
 



The interdecile range is a specific interquartile range; it is computed as the difference 
between the 10th and 90th percentiles. It comprises the middle 80% sample of the 
population.   The term x1 is defined as a distance from the transmitter site to the start 
point; x2 is defined as a distance from the transmitter site to the end point. 
 
Why is this quantile-based system used to derive ∆h?  Quantiles are less susceptible to 
long tailed distributions and outliers.  Since the elevation data may have anomalies, such 
as voids in SRTM data, causing outliers far removed from the mean, as long as the 
outliers are less than 10% of the total data, causing them to be lost in the lower 10% 
and/or upper 10% of data that is abandoned in the qtile subroutine, this methodology 
provides more accurate results than means and other moment-related statistics. 
 
Further explanation of quantiles can be found in the chapter on the qtile subroutine, 
which dlthx calls below in order to determine the 10th and 90th percentile quantiles. 
   
Line 1287: xa=xa+xb 

    
93.     qtile is a subroutine that returns a quantile.  The subroutine qtile is called twice, 

with the same path length (n-1), using array s and starting at s array location s[2]; 
once for quantile (ka-1), supposedly the 90th percentile quantile, and the second 
time for quantile (kb-1), the 10th percentile quantile.  The s+2 term causes the 
subroutine to skip the s array locations s[0] and s[1] which store the increment 
length and quantity values, and start with the elevation values in s[2]. 

  
94. The value of dlthxv is set to be equal to the difference between the two quantile 

values obtained from the deviation-from-average-terrain values in the s array, 
equal to quantile (ka-1)-quantile (kb-1).   

 
Line 1290: dlthxv= qtile(n-1,s+2,ka-1)-qtile(n-1,s+2,kb-1) 
 
With regard to describing the methodology and procedure to this point, for determining 
this ∆h, the interdecile range of elevations between the two points x1 and x2”, the NTIA 
is not specific.  George Hufford stated in the Algorithm, Section 1.3:  
 

“These quantities, together with ∆h, are all geometric and should be determined from 
the terrain profile that lies between the two terminals.  We shall not go into detail 
here.” 

  
95. The Algorithm does provide information as to the source of the formula for the 

next step, where it states in section 3.2., Preparatory calculations for both modes: 
 
 “We also note here the definitions of two functions of a distance s: 

 
∆h(s)  =  (1 − 0.8 e−s/D )∆h   with D =  50 km.  Alg. (3.9) 

 
and  



 
 σh(s) =  0.78 ∆h(s) exp [− (∆h(s) /H)1/4 ]   with H = 16 meters.” Alg. (3.10) 
 

the second formula, Alg. (3.10), shows a relationship between ∆h and the terrain 
roughness factor σh used in Tech Note 101. 
 
The formula Alg. (3.9) can be manipulated for use here; replacing s in Alg. (3.9) with the 
distance (x2 –x1), the distance between the end point and the start point of the path of 
elevations considered, specified in meters;  
 
 ∆h(s)  =  (1 − 0.8 e−s/D )∆h   with D =  50 km, (50,000 meters) becomes: 
 
   ∆h(s)             =  ∆h where D = 50,000 meters,  s = (x2 − x1) 
 (1 − 0.8 e−s/D ) 
 
The term  (1 − 0.8 e−s/D ) ranges in value from .2 for s = 0, up to .706 for s = 50 km. 
 
 
The value obtained at Line 1290 for dlthxv, a.k.a. ∆h(s), is then divided by 1.0-
.8*exp(− (x2-x1)/50,000), a path distance adjustment factor, to obtain ∆h; 
 
Line 1291: dlthxv/=1.0-.8*exp(-(x2-x1)/50.0e3) 
 
Note:  In the FORTRAN version of this program found in Appendix B of NTIA TR-82-
100, this line reads: 
 
 DLTHX=DLTHX/(1.0−0.8*EXP(-AMIN1(20.,(X2-X1)/50E3))) 
 
The archaic intrinsic function AMIN1 has been removed in the c++ version of the code. 
 
 

96. Here, subroutine delete [] is called with regard to array s; to manage the removal 
of all traces of array s from the computer’s working memory that were created by 
the command new [] on line 1262. 

 
Line 1292: delete[] s: 
 

97. The output returns the value of dlthxv; ∆h, or delta h.  
 
Line 1294:  return dlthxv;   
 
 
 
 
 
 



 
 
Chapter 10: Zlsq1 
 
ZLSQ1   Subroutine zlsq1 
    
The Linear Least Squares Fit between X1, X2 to the function described by Z--.   
 
 
Note: Used with point-to-point prediction and area prediction modes. 
 
Called by dlthx, while dlthx is being called by qlrpfl , after which qlrpfl may call zlsq1 
directly.  
 
Special Reference for this Chapter:  For the background discussion of the Linear Least 
Squares Fit solution, refers to equations in Chapter 15.2 of  “Numerical Recipes in C, 
Second Edition” ©Cambridge University Press. 
 
Background Notes on the Linear Least Squares Fit. 
 
A linear least squares fit subroutine implements a mathematical procedure for finding the 
best-fitting curve to a given set of points by minimizing the sum of the squares of the 
offsets (“the residuals”) of the points from the curve.  The name of this subroutine 
suggests the use of the linear least squares fitting methodology, the simplest and most 
commonly applied form of linear regression.  This methodology provides a solution to 
the problem of finding the best fitting line through a set of points.  In a linear least 
squares fit, vertical least squares fitting proceeds by finding the sum of the squares of the 
vertical (y-axis) deviations of the squares of the deviations of the function values (in this 
case, elevations) from a straight line, along the x-axis from j=0 to j=n.  The square 
deviations from each elevation point are therefore summed and the resulting residual is 
then minimized to find the best-fit line.  When used in a simple mode, to find the best 
fitting straight line through a set of points, the process provides a solution for a, an 
intercept value, and b, the slope value, in the straight line equation y = a +bx .  
 

In Tech Note 101, this equation becomes:  
 

h(x) = h + m(x – x )                                    (5.15a) 
 
Where the h(x) term replaces the y,  h replaces the intercept variable a, and the m 
replaces the b slope variable.    The term (x – x ) refers to the location of the reference 
zero crossing, where x = 0, being relocated to a position at the center, or midpoint, of the 
x path.  
 
For a full description of a set of equations used in the methodology, see Chapter 15.2, 
Fitting Data to a Straight Line, in the book “Numerical Recipes in C, Second Edition” 
©Cambridge University Press (Numerical Recipes).   A weakness of the least squares 



procedure is that it results in outlying points being given disproportionately large 
weighting.   However, if one is dealing with an even number of equal-width intervals, 
and, since we do not know the individual measurement errors, we set the individual 
measurement error factor to be equal to 1, and if we set the x,y zero crossing at the 
midpoint of the path, i.e. use an “x” equidistant path function that causes x to range in 
value from xi = ((-xa/2)+1) to xi = ((xa/2)-1) as the for loop cycles, causing “Sx”=0.0) 
then, solving for “a” at the midpoint of the values of “x” along the x axis (the section of 
the path considered), the formulas specified in 15.2.1 through 15.2.6 of Numerical 
Recipes simplifies so that “a” is equal to Sy, the sum of the “y” axis data point values, 
(elevation values along the path, divided by S, the number of “x” values (the number of 
intervals, represented by the argument  “xa”).  This avoids the need to use the square of 
the y values in the solution, minimizing the disproportionately large weighting of 
extremely high or low elevation values due to the squaring of the values.    
 
So the formula to solve for “a”, given the pre-conditions, simplifies to a = Sy/S, i.e.: 
   

a = (sum of elevation values along the path)/(number of intervals)  
 
   This subroutine analyzes a central section of the total path between the tx site and the 
receive site, starting a short distance, set in part 2, below, from the tx site, and ending a 
short distance, set in part 3 below, before the receive site.  This central section of the path 
is referred to below as the “section of the path considered”.  
 
  The “a” term is solved at the point where x = 0, at the midpoint of the path considered, 
and is later adjusted to be the “a” value where x = 0 at the endpoint of the path 
considered.  The terms z[0], the y value at the transmitter site, is then calculated by 
solving  z[0]= y = a +xb where x is at the transmitter site, and then solved for z[n] = y = a 
+xb where x  is at the receive site; the program outputs the values of z[0] and z[n].  
 
In the same way that the “a” solution formula simplifies, the “b” solution formula given 
in 15.2.6 of Numerical Recipes can be simplified.  To provide more detail for “b” than 
we did for “a”: 
 
 b =    S*Sxy – Sx*Sy     =      S*Sxy – Sx*Sy (15.2.6, Numerical Recipes) 
     Delta    (Sxx – (Sx)^2) 
 
 Where:  (See 15.2.1 through 15.2.5, Numerical Recipes) 

 
 S simplifies to be = N, the number of intervals in the path considered. 

  
Sx simplifies to be = 0.0, as the sum of the negative terms in the x equidistant 
function cancel out the positive terms as x progresses from  - xa/2, through 0, to 
xa/2.  

  
Sy simplifies to be =  (sum of the elevation values along the section of the path 
considered).  We will refer to this as the  (sum of the elevation values). 



 
Sxx simplifies to be = (sum of the squares of xi).  This is a non-zero number, as 
the squares of the negative values of the x equidistant function, i.e. the individual 
incremental values of xi^2 from xi = ((–xa/2)+1) to zero, are positive values. 
 
Sxy simplifies to be = (sum of x  times y along the section of the path 
considered).   We will refer to this as: (sum of xi*y).  Here x is the x equidistant 
function values, and y is the elevation values.  Sxy is equal to the value of b at the 
completion of the for loop. 
 

Since Sx simplifies to be =0.0, the formula for b simplifies: 
 
 b =    S*Sxy – Sx*Sy    =      S*Sxy – 0.0*Sy   =   S*Sxy   
           (Sxx – (Sx)^2)             (Sxx – (0.0)^2) Sxx 
 
Inserting the rest of the simplified S formulas: 
 
 b  =  S*Sxy   =  N *  (sum of xi*y) 
  Sxx    (sum of the squares of xi) 
 
Where xi is the value of the x equidistant function, or xi = - xa/2 +(n-2+1), 
 as n progresses in value from 2 to xa-1, and  xi progresses in value  
from (- xa/2)+1 to (xa/2)-1,  in the for loop. 
 
This solves b, the slope factor for the straight line equation y = a +bx . 
 
However, this is not quite what the subroutine does.   
 
 
The step-by-step subroutine analysis follows: 
 
From ITMD Sections 45 and 53: 
 
Call inputs: 
z[ ]  a.k.a. z,       z(J+2), J=0,…,en,   Function Values. 
&x1  a.k.a. x1 (x-one) 
&x2  a.k.a. x2      
& z0  a.k.a. z0          = xi, interval length 
& zn  a.k.a. z1, (z-one)  = en,  number of intervals 
 
Array z must have a special format;  

z[0] = en, the number of equally large intervals, 
 z[1] = xi, a.k.a. sigma, the interval length,  
 z(j+2), j=0,….n,  function values. 
 
local declarations: 



 
xn number of intervals 
xa first the number of intervals in distance x1 (distance between transmitter site and 

“start consideration location”); later, the path length of the portion of the path 
considered by the for loop measured in number of intervals. 

xb number of intervals in distance x2 (distance between transmitter site and “end 
consideration location”)  

x working variable  
a working variable used to calculate “a”, the intercept variable of formula y = a 

+xb; after for loop ends, contains sum of elevations along the considered section 
of the path. 

b         working variable used to calculate “b”, the slope variable of formula y = a +xb. 
n number of intervals in the section of the path considered in the for loop. 
ja location of for loop consideration along path, counted in intervals from the 

transmitter site. 
jb number of intervals in distance between transmitter site and “end consideration 

location”)  
 
This subroutine, zlsq1 ; 
 

98. Defines xn=z[0], setting xn = the total number of intervals between the transmitter 
site and the receive site, the two terminals. 

 
Line 1117 xn=z[0]; 
 

99. Calculates value for xa by calling FORTRAN_DIM(xl/z[1],0.0) 
 
Note:  The FORTRAN_DIM function receives inputs (&x, &y) 
 And reports out x-y if x is greater than y; otherwise the reported result is 0.0.   

So if xl/z[1] >0.0, xa=xl/z[1]-0.0, if xl/z[1] =<0.0, xa = 0.0. 
 

x1 (x-one) is the distance  between the transmitter site and the start point for 
consideration, at one point set to be the lesser of 1/10 of the path distance or 1/15th 
of the transmitter HAGL. z[1] is the length of one interval, so x1/z[1] is the 
number of intervals in x1 between the transmitter site and the start point for 
consideration.  So xa represents the number of intervals between the transmitter 
site and the start point for consideration. 

 
Line 1118:  xa=int(FORTRAN_DIM(xl/z[1],0.0)); 

 
100. Calculates value for xb using FORTRAN_DIM function.   

If xn is > x2/z[1], xb=xn-xn-x2/z[1].  Otherwise, xb =xn-0.0. 
 

x2 is the distance  between the transmitter site  and the end point for 
consideration,  at one point set to be shorter than the total transmit to receive path 
length by the lesser of 1/10 of the path distance or 1/15th of the receive antenna 



HAGL.  z[1] is the length of one interval, so x2/z[1] is the number of intervals in 
x2 between the transmitter site and the end point for consideration. xn is the total 
number of intervals in the path between the transmitter site and the receive site.  
So xb represents the number of intervals between the transmitter site and the end 
point for consideration. 

 
Line 1119: xb=xn-int(FORTRAN_DIM(xn,x2/z[1]));   
 

101. An if statement states that if xb is less than or equal to xa, which indicates 
that the total path is a very short one that causes the start point for consideration to 
be at or past the end point for consideration, then:   

 
a. If xa is greater than 1, the value of xa becomes equal to xa-1, if not, xa 

=0.0.   This reduces the value of xa by 1, unless xa is already 1.0 or less. 
b. If xn is greater than (xb+1), i.e. if the total path length (defined in number 

of intervals) is longer than the distance from the transmitter site to the end 
point for consideration plus 1 interval, the value of xb is reset to be equal 
to xn-(xn-(xb+1)), or xb+1,  increasing the value of xb by 1. 

c.  if xn is not greater than (xb+1), i.e. if the total path length is not longer 
than the distance from the transmitter site to the end point for 
consideration plus 1 interval, xb is reset to equal xn, the number of 
intervals in the total path length, effectively setting the end point for 
consideration to be at the receive site. 

 
Line 1123: xa=FORTRAN_DIM(xa,1.0); 
Line 1124: xb=xn-FORTRAN_DIM(xn,xb+1.0); 
 

102. The value of ja is preset to be equal to xa. 
103. The value of jb is preset to be equal to xb. 
104. The value of n is set to be equal to jb-ja, the number of intervals in the 

section of the path for consideration. 
105. The value of xa is reset to be equal to xb-xa, the number of intervals in the 

section of the path for consideration. 
106. The value of x is set to equal –0.5*xa, the negative of half the number of 

intervals in the section of the path for consideration. 
107. The value of xb is increased by the value of x. (In fact, shortens it, as x is a 

negative number).  
108. The value of a is set to be 0.5*(z[ja+2]+z[jb+2] ); this presets a to be 

equal to  
(the elevation of the start point+the elevation of the end point)/2, or the average 
of the start point and the end point. 
109. The value of b is set to be .5*(z[ja+2]; this presets b to be equal to ½ of 

the elevation of the start point. 
 

110. A for loop is started at line 1136, starting at i=2, continuing until i is no 
longer < n.  For each pass, i is incremented (increased by one), and then:  



a. ++ja   This increments ja so that the incremented value can be 
immediately used.  ja starts at the number of intervals between the 
transmitter site and the start point of the for loop’s consideration of the 
path elevations, and increases by one path interval for each for loop pass.    

b. x is increased by 1.  At the beginning of the for loop, x starts at –(xa)/2, or 
minus ½ of the number of intervals in the section of the path considered, 
and has 1 (increment) added to it for each for loop pass, prior to the 
calculation of a and b, which causes it to end up equal to ((xa)/2)-1), or 
one-half of the number of increments between the start point and the end 
point of the section of path considered, less one, when the for loop stops 
one increment shy of the end point.  This line generates the values of the x 
function,  
xi = - xa/2 +n+1, as n progresses from 2 to the value of (xa –1).   

c. a is increased by z[ja+2].   z[ja+2] is the elevation of the point being 
considered in this loop; as the for loop continues, this causes a to be 
increased by the sum of the elevations along the path considered. 

d. b is increased by z[ja+2]*x;  The z[ja+2] term is the elevation of the point 
being considered in this loop; as the for loop continues, and x proceeds in 
value from –1/2 of the path intervals to ½ of the path intervals, this causes 
b to collect the sum of the interval elevations along the path multiplied by 
x; the end result is a positive or negative number indicating a weighted 
bias of the sum of the elevations around the midpoint of the path, with a 
negative sum (bias) for b indicating the transmitter end of the path has the 
higher weighted average of elevations, and a positive sum (bias) indicating 
the receiver end of the path has the higher weighted elevation average.  
The varying value of x weights the averages toward the beginning and end 
of the path, with the midpoint, where x passes through zero, is smallest, 
having the least effect.  

 
111. Once the for loop ends, the value of “a” is reset to be equal to a divided 

by xa.  The value of a then represents the sum of the elevations at each interval 
along the path length considered, divided by the number of intervals; i.e. the 
average of the elevations along the path considered, and represents the value of 
“a” in y = a +xb, solved for the condition where x is equal to 0.0 at the midpoint 
of the path considered.  “a” will be the same for all points along the path, unless 
the intercept point (where x = 0) is reset.  Which it will be, to the end point of the 
path considered, before solving for z0 and zn 

 
Line 1144: a/=xa; 
 
 

112.   Now we need to solve for b, the slope of the straight-line formula y = a 
+xb.     Here we are dealing with an even number of equal-width intervals; we do 
not know the individual measurement errors, so we set the individual 
measurement error factor to be equal to 1; and we also use the “x” equidistant 
function (x ranges in value from = (-xa/2)+1 to (xa/2)-1 as the for loop cycles, 



causing “Sx”=0.0).  As discussed above in (14.) and the introductory section 
“Background on the Linear Least Squares Fit”, in solving for “b”, the slope value, 
the formulas specified in 15.2.1 through 15.2.6 of Numerical Recipes simplifies 
so that “b” is equal to the sum of the “x times y” axis data point values, 
represented by the argument  “b” value at the completion of the for loop), 
multiplied by the number of intervals (xa), and divided by the sum of the squares 
of the x values from the equidistant function along the path considered.  So the 
formula to solve for “b”, given the pre-conditions, should be: 

   
b = (sum of elevation values multiplied by the x equidistant function value) *(N, the 
number of intervals)/(sum of the squares of the x equidistant function values) 

 
The “sum of elevation values multiplied by the x equidistant function value”, is equal 
to the value of b at the completion of the for loop.   
 
The number of intervals, N, is equal to the value of xa. 

  
But the subroutine fails to calculate the sum of the squares of the x equidistant 
function values along the path.  

  
Now here we have a mystery, and perhaps errors in the original coding of the linear least 
squares fit algorithm:   

 
113. At line 1145, the term “b” is “solved” to be equal to 

b*12.0/((xa*xa+2.0)*xa).   The argument xa is the number of intervals along the 
path considered.  The b value on the right hand side of the equation is the sum of 
each individual elevation along the path considered, multiplied by the x 
equidistant function value at the elevation point’s increment point.  

 
The 12/((xa*xa+2)*xa) term is incorrect.   
 
The “12” number appears to replace the term “N” in the formula for “b” stated 
in (15.) above.  If so, the b formula could only be correct if N = 12; i.e. if the path 
considered had only a fixed number of intervals = 12. 
 

The term “(xa*xa+2)*xa” appears to be an attempt to replace the Sxx term in the 
b formula, as derived in the introductory section “Background on the Linear Least 
Squares Fit” above.  “(xa*xa+2)*xa” appears to attempt to replace the  Sxx term, 
the (sum of the squares of the x equidistant function values, xi) in the b formula 
from “Numerical Recipes”, by taking the square of the number of intervals, xa, 
adding 2, and multiplying by the number of intervals, to create a sum of the 
squares of the number of intervals.  The “2” appears to have been included to 
compensate for the fact that the for loop starts at i = 2, not i = 0, and increments ja 
and x before the a and b calculations, causing the for loop to ignore the start point 
elevation and the end point elevation of the section of the path considered.  This 
calculation fails, in that the (square of the number of intervals, plus 2), (multiplied 



by the number of intervals), is not the same as, is not equal to, and provides a 
larger calculated value than, the sum of the squares of the sequence of x values 
from the x equidistant function, this sequence of values defined as  xi = - xa/2 
incremented by 1 per elevation increment, up to (xa/2)-1 .   
 

As a result, the value of b is generally understated.  Therefore, there appear to 
be two problems with the subroutine; If N, the number of intervals in the section 
of the path considered, is not equal to 12, b is incorrect; if N =12, the substitute 
for the Sxx term gives a larger value, causing b to be significantly understated.  
See attached worksheet file for an analysis of the amount understated by length 
of path. 
 
The b value now attempts to represents the b term, or slope, of the straight-line 
formula y = a +b*x where x = 0 at the end point of the path considered in the for 
loop.    

  
114. The value of z0, the y-axis value of the equation line formula y = a +b*x, 

is calculated to be equal to a-(b*xb).  The value of a represents the average of the 
elevations along the path considered. The - (b*xb) term is the slope b times the 
distance xb (in increments) between the transmitter site to the end point of the 
path considered.  z[0] then equals the value of y = a +b*x  at the transmitter site. 
But since the “b” value is understated, as noted above, this value is incorrect. 
The b slope is understated, causing the line between z0 to zn to be “flattened” (to 
approach the a value) from the true value. 

 
115. The value of zn the y-axis value of the equation line formula (y= a +b*x) 

where x is at maximum (receive site) value, is calculated to be  a+(b*(xn-xb)).   
The value of a represents the average of the elevations along the path considered. 
The value of xn represents the number of intervals in the total path length.  The 
value of xb represents the distance, measured in intervals, from the transmitter to 
the end point of the path considered by the  for loop.  So the term b*(xn-xb) term 
is the slope b times the distance (in increments) between the end point of the path 
considered, where x = 0, to the receive site.  z[0] then equals the value of y = a 
+b*x  at the receive site.  But since the “b” value is understated, as noted above, 
this value is incorrect. 

 
   

116. Outputs: 
The start and end y-axis (z) values of the required line: 
 z0 at 0, the transmitter end of the path considered, and   
zn at x[t] =xi*en, or= z[1]*z[2], the receive end of the path considered.    

 
x1 and x2 are two-way arguments, both used as input and restated in the 
output. 

 
How can the calculation errors in b be corrected? By: 



 
a. Add a value-preset local variable, xi=0.0, to the double arguments 

declaration line, at Line 1114. 
 
b. Insert the line:   xi+=(x*x);  after line 1139, ( x+=1.0;) in the for loop.  At 

the completion of the for loop cycles, xi will represent the sum of the 
squares of the xi values, equal to the Sxx term in the b solution formula 
discussed in the “Background Notes on the Linear Least Squares Fit” 
section above. 

 
c. Replace line 1145, b = b*12.0/((xa*xa+2.0)*xa);  with b =  (b*xa)/xi;   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Chapter 11: Qtile 
 
Quartile subroutine: qtile. 
 
Note: Used with point-to-point mode.  Called by dlthx, near the end of the routine.  
Calls mymin, mymax. 
 
Derived from the Irregular Terrain Model description by George Hufford, 2002, (ITMD), 
compared to the ITM.cpp prepared by J. D. McDonald and John Magliacane for 
compilation on unix and linux systems.  “Line” numbers refer to the ITM.cpp as line 
numbered by Bloodshed Software’s DevC++ print function.  “Alg” numbers refer to the 
algorithm formula in “The ITS Irregular Terrain Model, version 1.22, the Algorithm” by 
G. A. Hufford, 1995. 
 
Used to find a quartile.  It reorders the array a so that a(j),j = 0..ir are all greater than or 
equal to all a(i),i = ir….nn.  In particular, a(ir) will have the same value it would have if 
a were completely sorted in descending order.  The returned value is qtile = a(ir).  
 
  
From ITMD Section 52: 
 
Call inputs: 
 
&nn,   a constant integer representing the number of data points in the array a 
a         array with nn data points: 
a[0] 
a[1] 
a[2] 
a[3] 
 
 
&ir  the quantile desired. 
 
declares private, or local, arguments:  
 
q = 0.0  
r 
m 
n  number of data points in array; set equal to input nn at start of subroutine 
i 
j 
j1 = 0 
iO = 0, k; 
bool done=false 
bool goto10=true 



 
This subroutine: 
 

117. Presets m to be equal to 0, and n=nn .  When called by dlthx, nn = number 
of data points in array a. 

 
Line 1157: m=0; 
Line 1158: n=nn 
 

118. Defines k to have a range from 0.0 to the value of n, and presets the value 
of k to be equal to ir. 

 
 
Line 1159:  k=mymin(mymax(0,ir),n); 
 

119. Starts a while loop, that continues until done,defined during declaration to 
be equal to a Boolean false, is not equal to true.   

 
Line 1161: while (!done) 
 
 

120. The first of the series of if statements in the while loop states that if 
(goto10), defined during declaration to be equal to a Boolean true, is true, then q 
is set equal to the input a array value at array location a[k], i0 is set equal to m, 
which on the first pass is 0.0, and j1 is set equal to n, which on the first pass has 
been set equal to nn,  the number of data points in the array a.   

 
Line 1163:  if (goto10) 
  { 
   q=a[k]; 
   i0=m; 
   j1=n; 
  } 
 
 
 

121. i is then set to be equal to i0, which on the first pass was set equal to m, 
which was preset to 0.0.   So i starts at 0.0. 

 
Line 1170: i=i0; 
 

122. a while statement is placed inside of the while loop started on line 1161.   
This statement acts as long as both the value of i is equal or less than n, and the 
value of the a array at location a[i] is equal to or greater than q.  If the while 
statement is true, the value of i is incremented, i.e. increased by 1, on each pass. 

 



Line 1172: while (i<=n && a[i]>=q) 
   i++; 
 

123. The next if statement in the while loop started at line 1161, states that if i 
is greater than n, i is to be set equal to n.  

 
Line 1175: if (i>n) 
   i=n; 
 

124. Then j is set to be equal to j1.  j1 having been preset to 0.0 on the first 
pass, j is then preset to 0.0 on the first pass. 

 
Line 1178:  j=j1; 
 

125. A second while statement is placed inside of the first.  This one acts as 
long as both the value of j is equal or greater than m, which starts at zero, and the 
value of the a array value [j] is equal to or less than q.  If the while statement is 
true, the value of j is negatively incremented, i.e. decreased by 1, on each pass. 

 
Line 1180: while (j>=m && a[j]<=q) 
   j--; 
 

126. The next if statement in the while loop started at line 1161, states that if j 
is less than m, j is set to be equal to m.  On the first pass, m =0, so if j is less than 
0, j is set to be equal to 0.0.  

 
Line 1183:   if (j<m) 
   j=m; 
 

127. The next if statement in the while loop, states that if i is less than j,  
a. r is set to be equal to the a loop value [i]. 
b. then the a loop value [i] is reset to be equal to the a loop value [j].  
c. then the a loop value [j] is reset to be equal to r. 
d. i0 is reset to be equal to the value of i + 1. 
e. j1 is reset to be equal to the value of j - 1. 
f. goto10 is set to be equal to Boolean false. 

 
Line 1186:  if (i<j) 
  { 
   r=a[i]; 
   a[i]=a[j]; 
   a[j]=r; 
   i0=i+1; 
   j1=j-1; 
   goto10=false; 
  } 



 
128. The if statement at line 1186 is followed by three else if statements. The 

first of these else if statements operates if i is not less than j at line 1186, and i is 
less than k; in that case,   

 
a. the value of the a array value [k] is set to be equal to the value of the a 

array value [i]. 
b. then the a loop value [i] is reset to be equal to the value of  q.  
c. the value of m is reset to be equal to the value of i + 1. 
d. goto10 is set to be equal to Boolean true.       

 
Line 1196:  else if (i<k) 
   { 
    a[k]=a[i]; 
    a[i]=q; 
    m=i+1; 
    goto10=true; 
   } 
 

129. The if statement at line 1186 is followed by three else if statements. The 
second of these else if statements operates if i is not less than j at line 1186, and j 
is greater than k; in that case,   

 
a. the value of the a array value [k] is set to be equal to the value of the a 

array value [j]. 
b. then the a loop value [j] is reset to be equal to the value of  q.  
c. the value of n is reset to be equal to the value of j - 1. 
d. goto10 is set to be equal to Boolean true.       

 
Line 1204:  else if (j>k) 
  { 
   a[k]=a[j]; 
   a[j]=q; 
   n=j-1; 
   goto10=true; 
  } 
 
 

130. The if statement at line 1186 is followed by three else if statements. The 
third of these else if statements operates if i is not less than j at line 1186, i is not 
less than k at line 1196, and j is not greater than k at line 1204; in that case done is 
set to be equal to Boolean true, completing the while loop started at line 1161.   

 
Line 1204: else 
  done=true; 
 



131.  If the while loop is complete, the qtile subroutine reports out the single 
quantile value q. 

 
Line 1216:  return q; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 12: Lrprop 
 
Longley-Rice Propagation subroutine lrprop. 
 
Note: Used with both point-to-point and area modes.  For point-to-point mode, called at 
end of qlrpfl.  Calls subroutines adiff, alos, ascat, mymin, and mymax. 
 
From ITMD Sections 4, 5 to 9, 15; 16, and 17 with 18 and 19, and 20 with 21, 22 and 23: 
 
The Longley-Rice propagation program.  This is the basic program; it returns the 
reference attenuation aref.  This is the “PaulM” version of lrprop; “Freds lrprop”, found 
in version 1.2.2, was removed from version 7.0 when it was released on June 26, 2007. 
 
 
Call inputs: 
 
d  path distance 
 
Prop_type 
 
&prop  array prop with array elements: 
 
propa_type 
 
&propa array propa with array elements: 
 
defines private, or local, arguments:  
wlos static boolean argument; true if line-of-sight coefficients have been 

calculated. 
wscat static boolean argument; true if troposcatter coefficients have been 

calculated.  
dmin static double argument; minimum acceptable path distance length in 

meters  
xae  static double argument; value calculated in Step 11. 
 
prop_zgnd  sub array zgnd (average ground impedance) with elements: 
   prop.zgndreal   resistance element of ground impedance 
   prop.zgndimag  reactive element of ground impedance 
a0 
a1 
a2 
a3 
a4 
a5 
a6 
 



d0 
d1 
d2 
d3 
d4 
d5 
d6 
 
wq Boolean argument; indicates whether general case 1 or general case 2 

applies in calculating line of sight coefficients. 
q  working variable; holds  various values during several operations 
j either 0 (1 in Fortran), for transmit terminal, or 1 (2 in Fortran) for receive 

terminal 
 
 
This subroutine: 
 

Uses d, and information in arrays prop and propa in order to calculate aref, the 
reference attenuation (radio signal strength loss) along the path between a transmit 
site and a receive location. 

 
132. An if statement is initiated; it operates from lines 675 to 714.  If  

prop.mdp, the mode of the propagation model, is not equal to zero, (zero would 
have indicated that the area prediction mode has initiated and is continuing), then 
the mode of the propagation model is either 1, which would initialize the area 
prediction mode, or –1, which indicates the program is running in the point to 
point mode.  If prop.mdp = 0, the program proceeds to the for loop on line 677.  
If prop.mdp is not zero, then: 

 
Line  675: if (prop.mdp!=0) 
    

133.  A for statement is initiated with two loops, j=0 and j=1.   
 
a. The first loop sets dls[0], the distance from the transmitter site to the 
smooth earth horizon, to be equal to the square root of 2 times prop.he[0] 
divided by prop.gme. 

 
The algorithm formula comes from: “ESSA Technical Report ERL 79-ITS 67, 
Prediction of Tropospheric Radio Transmission Over Irregular Terrain, A 
Computer Method – 1968” by A.G.Longley and P.L.Rice, where it states on page 
12;   
“When individual path profiles are not available, median values of the horizon 
distances dL1, 2  are estimated as functions of the median effective antenna heights 
he1 and he2 determined above, the terrain irregularity factor ∆h, and the smooth-
earth horizon distances DLs1  and DLs2 .  The smooth earth distance from each 
antenna to its horizon over a smooth earth is defined as:  



 
DLs1, 2 = (.002 * a * he1, 2).5   in km.    [ITS67 (5a)] 
  

where the effective antenna heights he1, 2 are in meters and the effective earth’s 
radius a is in kilometers, as defined by (1).” 

   
NOTE: Note the first phrase of the quote above, authored by Longley and Rice.  Ms. 
Longley and Mr. Rice did not intend this formula to be use where individual path 
profiles are available; therefore, this subroutine is eligible for revision and 
correction.  For more information, please see the notes in the chapter on subroutine 
qlrpfl, which also uses these formulas for point-to-point calculations.  
 
 
 Converting ITS67 (5a) for meters instead of km, we obtain: 
 
  DLs1, 2 = (2 * a * he1, 2).5   in meters.   
 
 As derived in the chapter on subroutine qlrpfl, in step 11: 
 

a  = 1/ gme. 
 
Where:     a is the earth’s effective radius, in meters, and  
  gme is the earth’s effective curvature, in units of 1/meters.  
 

The formula then becomes:  
 

  DLs1, 2 = (2 * he1, 2/gme).5   in meters.  [Alg. 3.5] 
 
 

And in the computer, he[0] is he1, gme is stored in array prop at prop.gme; and the 
result, DLs1, is stored in array propa at propa.dls[0].    

 
b. Similarly, the second loop sets dls[1], the distance from the receive site 
to the smooth earth horizon, equal to the square root of 2 times prop.he[1] 
divided by prop.gme. 

 
Line 677:   for (j=0; j<2; j++) 
   propa.dls[j]= sqrt(2.0*prop.he[j]/prop.gme); 
 
 
   

134. The program then proceeds to:   
a. sets propa.dlsa, the sum of the smooth-earth horizon distance, equal to the 

sum of propa.dls[0] and propa.dls[1], which were calculated in step 2 
above, based on: 

 



  The sum of the smooth-earth horizon distance is  
 
DLs  =  DLs1  +   DLs2              [ITS67 (5b) or Alg. 3.6] 

  
b. sets propa.dla, the  total distance between the antennas and their horizons, 

equal to the sum of propa.dl[0] and propa.dl[1], based on: 
 
 

The total distance, dL, between the antennas and their horizons is  
 

   dL  =  dL1  +   dL2            [ITS67 (5d) or Alg. 3.7] 
 

c. sets propa.tha to be equal to the greater of either (1) the sum of the theta 
angles stored in prop.the[0] and prop.the[1], or (2) the result of 
multiplying (− propa.dla (calculated in step 3(b)), times prop.gme, the 
effective earth’s curvature): 

 
tha= greater of: ( the1+the1) or (-dla*gme)          [Alg. 3.8] 
 

 
d. sets the Boolean value of wlos and wscat to be false, as per instruction in 

ITMD Section 6: 
 
Line 680: propa.dlsa=propa.dls[0]+propa.dls[1]; 
  propa.dla=prop.dl[0]+prop.dl[1]; 
  propa.tha=mymax(prop.the[0]+prop.the[1],-propa.dla*prop.gme); 
  wlos=false; 
  wscat=false; 
 
 
 
 
In Steps 4 through 9, the program checks the parameter ranges of the input values, 
as per instructions in ITMD Section 7. 
 

135.   An if statement is initiated to check if the frequency is within range; the 
wave number, prop.wn, which is derived from the frequency in step 2 of 
subroutine qlrps, is checked to see if it is less than .838 (equivalent to a frequency 
of 40 MHz) or greater than 210 (equivalent to a frequency of 10 GHz).  If 
prop.wn is outside of the range, prop.kwx, the error marker, is set to equal the 
greater of: the existing value of prop.kwx; or 1.    

 
Line 686:  if (prop.wn<0.838 || prop.wn>210.0) 
   prop.kwx=mymax(prop.kwx,1); 
     

136. A for statement is initiated with two loops, j=0 and j=1.   



 
a. An if statement is initiated to check if hg[0], the transmitter antenna height 

above ground level, is within range; if hg[0] is less than one meter or 
greater than one kilometer, prop.kwx, the error marker, is set to equal the 
greater of: the existing value of prop.kwx; or 1. A value of kwx = 0 
indicates: no warning; kwx = 1 indicates: caution; parameters are close to 
limits. 

   
b. An if statement is initiated to check if hg[1], the receiver antenna height 

above ground level, is within range; if hg[1] is less than one meter or 
greater than one kilometer, prop.kwx, the error marker, is set to equal the 
greater of: the existing value of prop.kwx; or 1.    

 
Line 689:   for (j=0; j<2; j++) 
   if (prop.hg[j]<1.0 || prop.hg[j]>1000.0) 
    prop.kwx=mymax(prop.kwx,1); 
 

137. A for statement is initiated with two loops, j=0 and j=1.   
 

a. A three-way if statement is initiated to check if the[0], the transmitter 
antenna take off angle theta, is within range; if either: 

(1) the absolute value of the[0] is greater than 0.2, 
(2) prop.dl[0], the distance from transmitter to horizon,, is < less 

than 1/10 of  propa.dls[0], smooth earth distance from transmitter 
to horizon, 

(3) prop.dl[0] is > 3.0 * propa.dls[0] 
Then prop.kwx, the error marker, is set to equal the greater of: the existing 
value of prop.kwx; or 3, a value of kwx = 3 indicating that internal 
calculations show parameters out of range.    

 
b. A three-way if statement is initiated to check if the[1], the receiver 

antenna take off angle theta, is within range; if either: 
(1) the absolute value of the[1] is greater than 0.2, 
(2) prop.dl[1], the distance from transmitter to horizon,, is < less 

than 1/10 of  propa.dls[1], the smooth earth distance from 
transmitter to horizon, 

(3) prop.dl[1] is > 3.0 * propa.dls[1] 
 

Then prop.kwx, the error marker, is set to equal the greater of: the existing value 
of prop.kwx; or 3.    

 
Line 693:     for (j=0; j<2; j++) 

if (abs(prop.the[j]) >200e-3 || prop.dl[j]<0.1*propa.dls[j] || 
prop.dl[j]>3.0*propa.dls[j] ) 

    prop.kwx=mymax(prop.kwx,3); 
 



138.    A seven-way if statement is initiated to check the ranges of  ens, gme, 
zgnd, and wn.   If either: 

a. prop.ens, the surface refractivity of the atmosphere, is less than 250.0 or 
greater than 400; 

b. prop.gme, the effective earth’s curvature, is less than 75e−9 or greater than 
250e−9; 

c. prop.zgnd.real, the surface transfer impedance real, (or resistance) 
component is less or equal to the absolute value of prop.zgnd.imag, the 
imaginary (or reactance) component; 

d. prop.wn, the wave number, is less than 0.419 (equal to a frequency of 20 
Mhz) or greater than 420 (equal to a frequency of 20 Mhz); 

Then prop.kwx, the error marker, is set to 4, indicating parameters out of range.    
  

Line 697:  if (prop.ens < 250.0 || prop.ens > 400.0 || prop.gme < 75e-9 || prop.gme > 
250e-9 || prop_zgnd.real() <= abs(prop_zgnd.imag()) || prop.wn < 0.419 || 
prop.wn > 420.0) 

   prop.kwx=4; 
 
139. A for statement is initiated with two loops, j=0 and j=1.   

 
a. An if statement is initiated to check if hg[0], the transmitter antenna height 

above ground level, is within its maximum range; if hg[0] is less than one-
half meter or greater than three kilometers, prop.kwx, the error marker, is 
set to equal 4. 

 
b. An if statement is initiated to check hg[1], the receiver antenna height 

above ground level, as in (a.) above.    
 
Line 700:  for (j=0; j<2; j++) 
  if (prop.hg[j]<0.5 || prop.hg[j]>3000.0) 
   prop.kwx=4; 
 

140.  The value of dmin is set to be equal to five times the absolute value of 
[(prop.he[0] − prop.he[1])], i.e. equal to five times the value of the difference in 
height between the effective height of the transmit antenna and the receive 
antenna. The abs command ignores any negative sign in the result, causing the 
result to always be a positive value.  

  
Line 704:    dmin=abs(prop.he[0]-prop.he[1])/200e-3; 
 
 
From steps 10 through 20, the coefficients for the Diffraction Range are calculated: 
 
 

141. The program calls adiff with inputs (0.0,prop,propa) .   
 



The subroutine adiff returns adiff, the “diffraction attenuation” at the distance d. 
 

 
The value of q is set to be equal to the returned value adiff.  (Note: since the input d = 
0.0, the returned value of  adiff  will be 0.0 for point-to-point mode.  See subroutine 
adiff.   

 
Line 705: q=adiff(0.0,prop,propa); 
 

142.   xae is set to be equal to: (prop.wn*(prop.gme*prop.gme)−1/3       [Alg. 
4.2]  
Where:  
 prop.wn is the wave number, equal to the frequency in MHz/47.7. 
 prop.gme is the effective earth’s curvature. 

 
Line 707:  xae=pow(prop.wn*(prop.gme*prop.gme),-THIRD);  
 

143. d3 is set to be equal to the greater of propa.dlsa or (1.3787 * xae + 
propa.dla): [Alg. 4.3] 

where: 
Propa.dlsa is the distance value set at line 680, the total smooth earth 

horizon distance. 
  xae value was set at line 707.  
  Propa.dla is the total horizon distance.  
 
Line 708:  d3=mymax(propa.dlsa,1.3787*xae+propa.dla); 
  

144. d4 is set to be equal to d3 plus 2.7574 times xae    [Alg. 
4.4] 

 
Line 709: d4=d3+2.7574*xae; 
   

145. The program calls adiff with inputs (d3,prop,propa) .    [Alg. 
4.6] 

 
The subroutine adiff returns adiff, the “diffraction attenuation” at the distance d. 
 a3 is set to be equal to adiff;           

 
Line 710:  a3=adiff(d3,prop,propa);     
  

146.  The program calls adiff with inputs (d4,prop,propa) .    [Alg. 
4.6] 
The subroutine adiff returns adiff, the “diffraction attenuation” at the distance d. 
 a4 is set to be equal to adiff 

 
Line 711:  a4=adiff(d4,prop,propa); 



    
147.  propa.emd is set to be equal to: (a4−a3)/( d4−d3)     [Alg. 

4.7] 
 
Line 712:  propa.emd=(a4-a3)/(d4-d3); 
  

148.  propa.aed is set to be equal to: (a3 − propa.emd*d3)  [Alg. 
4.8] 

 
Line 713: propa.aed=a3-propa.emd*d3; 
        } 
 
 

149. The first if statement has run its course.  A new if statement is initiated, as 
per Section 5 of the ITMD,  stating that if prop.mdp is greater than or equal to 
zero, then:   

 
a. prop.mdp is set to be equal to zero, indicating the area mode has initiated 

and will continue, and; 
b. prop.dist is set to be equal to d, the path distance.  

 
Line 716: if (prop.mdp>=0) 
  { 

 prop.mdp=0; 
  prop.dist=d; 
  } 
   

150. A third if statement is initiated.  It has three embedded if statements that 
check the path distance [see Section 8 of the ITMD]; so if prop.dist, the value of d 
the path distance, is greater than zero, and: 

  
  a. if prop.dist is greater than 1,000 kilometers, then: 

prop.kwx, the error value, is set to be equal to the higher value of 
prop.kwx or 1; 
 

  b. if prop.dist is less than dmin,then;   
   prop.kwx is set to be equal to the higher value of prop.kwx or 3; 
 
  c. if prop.dist is less than 1000 meters,  or  

prop.dist is greater than 2000 kilometers, then: 
   prop.kwx is set to be equal to 4; 
 
Line 722: if (prop.dist>0.0) 
  { 
   if (prop.dist>1000e3) 
    prop.kwx=mymax(prop.kwx,1); 



 
   if (prop.dist<dmin) 
    prop.kwx=mymax(prop.kwx,3); 
 
   if (prop.dist<1e3 || prop.dist>2000e3) 
    prop.kwx=4; 
  } 
 
 

151.  The third if statement, and its three embedded if statements, have run 
their course.  A fourth primary if statement is initiated, stating that if prop.dist is 
less than prop.dlsa, then:  

Line 734:  if (prop.dist<propa.dlsa) 
  { 
 
In steps 21 through 37, the coefficients for the Line-of-Sight Range, including the line-of-
sight path loss, are calculated: 
 
 

152. The fourth primary if statement is follow by a series of embedded if and 
else statements; the first of these if statements states that: if (wlos) is a boolean 
false, indicating that the line-of-sight coefficients have not yet been calculated, 
then:  

a. Subroutine alos is called with input (0.0,prop,propa).  The subroutine alos 
returns alosv, the value of the line of sight attenuation, and q is set to be 
equal to alosv. 

 
b. d2 is set to be equal to propa.dlsa, the sum of the two smooth earth 

horizon distances; 
 
c. a2 is set to be equal to the sum of propa.aed and (d2 * propa.emd);  

 
where  

propa.aed    is defined in step 17, above   [Alg 4.8]   
propa.emd     is defined in Step16, above [Alg. 4.7] 

 
d. d0 is set to be equal to: (1.908*prop.wn*prop.he[0]*prop.he[1];          

[Alg. 4.28] 
where 

   prop.wn      is the wave number, = frequency /47.7 MHz*meters 
prop.he[0]  is the effective height of the transmit antenna  
prop.he[1]  is the effective height of the receive antenna 

 
Line 736:  if (!wlos) 
  { 
   q=alos(0.0,prop,propa); 



   d2=propa.dlsa; 
   a2=propa.aed+d2*propa.emd; 
   d0=1.908*prop.wn*prop.he[0]*prop.he[1];   
 

153. The first embedded if statement following the fourth primary if statement, 
states that if propa.aed is greater than, or equal to, zero, then: 

a. d0 is set to be equal to the lesser of:  d0 or  ½ of propa.dla;    [ Alg. 4.28] 
where propa.dla is the sum of the two terminal to horizon distances, and: 

      b. d1 is set to be equal to: d0+0.25*(propa.dla − d0);    [Alg. 4.29] 
    
Line 743:  if (propa.aed>=0.0) 
   { 
    d0=mymin(d0,0.5*propa.dla); 
    d1=d0+0.25*(propa.dla-d0); 
   } 
 

154.  An else statement follows, so if propa.aed is less than zero, then:   
d1 is set to be the greater of:  [-propa.aed/propa.emd] or [0.25*propa.dla]   
[Alg. 4.39] 

  
Line 749: else 
   d1=mymax(-propa.aed/propa.emd,0.25*propa.dla); 
  

155. Subroutine alos is called with input (d1,prop,propa).  [Alg. 4.31]  
 
The subroutine alos  returns alosv, the value of the line of sight attenuation, and a1 is 
set to be equal to alosv. 

 
Line 752:   a1=alos(d1,prop,propa); 
   

156. wq is then set to be equal to Boolean false. 
 
Line 753:  wq=false; 
 

157.  The second embedded if statement following the fourth primary if 
statement, states than if d0 is less than d1, then: 

 
a.  Subroutine alos is called with input (d0,prop,propa).  The subroutine 
alos returns alosv, the value of the line of sight attenuation, and a0 is set to 
be equal to alosv.      [Alg. 4.30] 
 
b. q is set to be equal to: log(d2/d0) 
 
c. propa.ak2 is set to be equal to: 
 
 ((d2-d0)*(a1-a0)-(d1-d0)*(a2-a0))/((d2-d0)*log(d1/d0)-(d1-d0)*q))  



 
or zero, whichever is greater;     [Note: there is an error in Alg. 4.32 here 
that leaves out the log function.  Correct in the code.] 
 
d. if  propa.aed>=0.0 or propa.ak2>0.0 

wq is set to be equal to Boolean true;   
 

Line 755:  if (d0<d1) 
       { 
   a0=alos(d0,prop,propa); 
   q=log(d2/d0); 

propa.ak2=mymax(0.0,((d2-d0)*(a1-a0)-(d1-d0)*(a2-a0))/((d2-
d0)*log(d1/d0)-(d1-d0)*q)); 

   wq=propa.aed>=0.0 || propa.ak2>0.0; 
 

158.  A second if statement is embedded within the if statement on line 736.  If 
wlos is not a Boolean “true”, and if wq is boolean “true”, then:  propa.ak1 is set to 
be equal to: (a2-a0-propa.ak2*q)/(d2-d0).          [Alg. 4.33] 
 

Line 762: if (wq) 
  {  

  propa.ak1=(a2-a0-propa.ak2*q)/(d2-d0); 
 

159. An if statement is embedded within the if statement on line 762.  So: 
a. If wlos is not a Boolean “true”, and; 
b.  if d0 is less than  d1; 
c.  if  wq is boolean “true”, and;  
d.  if propa.ak1 is less than zero; 
e.  then:   (1.) propa.ak1 is set to be equal to zero, and:        [Alg. 4.36] 

(2.) propa.ak2 is set to  be equal to (a2 – a0)/q if a2 is greater than 
a0; if a2 is not greater than a0, the FORTRAN_DIM function 
returns zero, and propa.ak2 is set to  be equal to 0.0/q, i.e. zero. 
[Alg. 4.35] 
  

Line 766:           if  (propa.ak1<0.0) 
    { 
         propa.ak1=0.0; 
        propa.ak2=FORTRAN_DIM(a2,a0)/q; 
 
  

160. An if statement is embedded within the if statement on line 766, So: 
a. if wlos is not a Boolean “true”, and; 
b. if d0 is less than  d1;  
c. if wq is boolean “true”, and  
d. if propa.ak1 is less than zero, and  
e. if propa.ak2 is equal to zero, then: 



f. propa.ak1 is set to be equal to propa.emd.    [Alg. 4.37] 
 

  
Line 771:   if (propa.ak2==0.0) 
     propa.ak1=propa.emd; 
   } 
  } 
 

161.  At this point, the if statements at Lines 771, 766, and 762 have completed 
their run. The if statements at Lines 755 and 736 are still active. 

 
 
 

162. An else statement follows, providing an alternative path to the if statement 
on line 755.   Therefore:   

a. if wlos is not a Boolean “true”, and;  
b. if d0 is equal to or greater than  d1, then: 
c.  propa.ak2 is set to be equal to zero, and: 
d. propa.ak1 is set to be equal to (a2-a1)/(d2-d1); 

 
Line 776:  else 
   { 
    propa.ak2=0.0; 
    propa.ak1=(a2-a1)/(d2-d1); 
 

 
163. An if statement is embedded within the else statement on line 766, so: 

a. if wlos is not a Boolean “true”, and;  
b. if d0 is equal to or greater than  d1, and; 
c. if  propa.ak1 is less than or equal to zero,  
d. propa.ak1 is set to be equal to propa.emd. 

 
Line 781:    if (propa.ak1<=0.0) 
         propa.ak1=propa.emd; 
   } 
  } 
   
 

164. The else statement from line 776 ends its run; the if statements on line 755 
and 736 are still active. A new else statement follows on line 786, providing an 
alternative path to the if statement on line 755.   So:  

a. if wlos is not a Boolean “true”, and;  
b. if d0 is equal to or greater than  d1, and; 
c. propa.ak1 is set to be equal to: (a2-a1)/(d2-d1);     [Alg. 4.41] 
d.  propa.ak2 is set to be equal to 0.0;    [Alg. 4.40] 

 



Line 791:    else 
  { 
   propa.ak1=(a2-a1)/(d2-d1); 

   propa.ak2=0.0; 
 
 
165. An if statement is embedded within the else statement on line 786, so: 

a. if wlos is not a Boolean “true”, and;  
b. if d0 is equal to or greater than  d1, and; 
c. if  propa.ak1 is less than or equal to zero,  
d. propa.ak1 is set to be equal to propa.emd. 

 
Line 791:   if (propa.ak1<=0.0) 
    propa.ak1=propa.emd; 
  } 
 
Note:  In the ITM version 7.0 released June 26, 2007, the else and if statements in Steps 
33 and 34 were removed, and the else statement in Step 33 becomes an if statement.  The 
modification performs the same actions as the old code, in 10 fewer lines; 
 
Alternate to Steps 31 to 34;   
 

The else statement from line 776 ends its run; the if statements on line 755 and 736 
are still active. A new if !wq statement follows, leading to a FORTRAN_DIM call;  
So:  

e. if wlos is not a Boolean “true”, and;  
f. if d0 is equal to or greater than  d1, and; 
g. propa.ak1 is set to be equal to (a2-a1)/(d2-d1) if a2 is greater than a1; if 

a2 is equal to or less than a1,  propa.ak1 is set to be equal to zero.    
        [Alg. 4.41] 

h.  propa.ak2 is set to be equal to 0.0;    [Alg. 4.40] 
 

Alternate code:  if (! wq) 
  { 
   propa.ak1=FORTRAN_DIM(a2,a1)/(d2-d1); 

   propa.ak2=0.0; 
 
 
An if statement is embedded within the if (! wq) statement, so: 

i. if wlos is not a Boolean “true”, and;  
j. if d0 is equal to or greater than  d1, and; 
k. if  propa.ak1 is equal to zero,  
l. propa.ak1 is set to be equal to propa.emd. 

 
Alternate Code: if (propa.ak1= =0.0)  propa.ak1=propa.emd; 
  } 



 
166. The else statement on line 786 has now completed its run.  Here: 

a. propa.ael is set to be equal to a2 – propa.ak1 * d2 – propa.ak2 * log(d2), 
and: 

b. wlos is set to be equal to: Boolean” true”, indicating completion of the 
calculation of the line-of-sight coefficients. 

 
Line 795:    propa.ael=a2-propa.ak1*d2-propa.ak2*log(d2); 
  wlos=true; 
      } 
 
 
The next step calculates the reference attenuation, aref, for the line of sight range. 
 

167. An if statement is initiated.   The if statement on line 736 is still active, so: 
a.  if wlos was not a Boolean “true” when checked by the if statement in Step 

21, and;  
b.  if prop.dist is greater than zero, then: 
c.  prop.aref is set to be equal to:      

propa.ael + propa.ak1 * prop.dist + propa.ak2 * log(prop.dist)  
       [Alg. 4.1] 

 
 

Line  799:   if(prop.dist>0.0) 
 prop.aref=propa.ael+propa.ak1*prop.dist+propa.ak2*log(prop.dist); 

 
168.  The if statement on line 736 ends its run.  We have finished calculating 

the coefficients for the Line of Sight range, and have calculated the value of aref 
if the path is line-of-sight from the transmit to the receive terminals.   
 

Line 802:     } 
 
 
In Steps 38 to 41, coefficients are calculated for the Troposcatter (scatter) range. 
 
 

169. The last primary if statement is initiated at line 804.  It has an embedded if 
statement immediately following; so if: 

a.  prop.dist, the path distance, is less than or equal to zero,  or: 
b. prop.dist, is greater than propa.dlsa, the sum of the calculated distances to 

the smooth earth horizons.  This is the point, for a smooth earth condition, 
where diffraction mode takes over from line of sight mode. 

c. and; 
d. if wscat is not Boolean true (i.e. is Boolean false), then: 



(1) subroutine ascat is called with inputs (0.0, prop,propa). 
Subroutine ascat returns ascatv, the value of the “scatter 
attenuation”, and q is reset to be equal to ascatv 

(2) d5 is set to be equal to propa.dla + 200,000 meters. [Alg. 4.52] 
(3) d6 is set to be equal to d5 + 200,000 meters, i.e. = propa.dla + 

400,000 meters.            [Alg. 4.53] 
(4) subroutine ascat is called with inputs (d6, prop,propa). 

Subroutine ascat returns ascatv, the value of the “scatter 
attenuation”, and a6 is reset to be equal to ascatv       [Alg. 4.54]  

(5) subroutine ascat is called with inputs (d5, prop,propa). 
Subroutine ascat returns ascatv, the value of the “scatter 
attenuation”, and a5 is reset to be equal to ascatv       [Alg. 4.55] 

 
Line 804:  if  (prop.dist<=0.0 || prop.dist>=propa.dlsa) 
         { 
   if(!wscat) 
   {  
    q=ascat(0.0,prop,propa); 
    d5=propa.dla+200e3; 
    d6=d5+200e3; 
    a6=ascat(d6,prop,propa); 
    a5=ascat(d5,prop,propa); 
 
  

170.  An if statement, embedded under the if statement at line 806, which is 
embedded under the primary if statement at line 804, is initiated. So if:  

a.  prop.dist, the path distance, is less than or equal to zero,  or: 
b. prop.dist, is greater than propa.dlsa, and:   
c. if wscat is not Boolean true (i.e. is Boolean false),and; 
d. if a5 is less than 1000, then: 

(1) propa.ems is set to be equal to: (a6-a5)/(200000 meters)       
[Alg. 4.57] 

(2) propa.dx, the distance where diffraction mode gives way to 
scatter mode, is set to be equal to the greater of: [propa.dlsa] or  
[the greater of  (propa.dla + 0.3 * xae * log(47.7 * prop.wn),  or   
((a5-propa.aed-propa.ems*d5)/(propa.emd-propa.ems))];   
[Alg. 4.58] 

(3) propa.aes is set to be equal to: 
(propa.emd -propa.ems) * propa.dx + propa.aed .          

[Alg. 4.59] 
 
 
Line 814: if (a5<1000.0) 
  { 
   propa.ems=(a6-a5)/200e3; 



propa.dx=mymax(propa.dlsa,mymax(propa.dla+0.3*xae*log(47.7*
prop.wn),(a5-propa.aed-propa.ems*d5)/(propa.emd-propa.ems))); 

   propa.aes=(propa.emd-propa.ems)*propa.dx+propa.aed; 
  } 
 

171.  An else statement provides an alternate path to the if statement 
immediately above.  So if: 

a.  prop.dist, the path distance, is less than or equal to zero,  or: 
b. prop.dist, is greater than propa.dlsa, and; 
c. if wscat is not Boolean true (i.e. is Boolean false),and; 
d. if a5 is equal to or greater than 1000, then: 

(1) propa.ems is set to be equal to: propa.emd. 
(2) propa.aes is set to be equal to propa.aed.   
(3) propa.dx  is set to be equal to: 10,000,000.   [Alg. 4.56] 

 
 Line 821:   else 
   { 
    propa.ems=propa.emd; 
    propa.aes=propa.aed; 
    propa.dx=10.e6; 
   } 
 

172.  The value of wscat is then set to be equal to a Boolean “true;” The if 
statement at line 806 then ends its run.  

 
Line 828:   wscat=true;  (Scatter coefficients calculated and ready) 
  } 
 
 
The coefficients for the Troposcatter (scatter) range have now been calculated.  In 
steps 42, 43, and 44, aref, the reference attenuation, will be computed as per [Alg. 
4.1] if the path ends in the scatter (Step 43) or diffraction (Step 42) ranges. 
 
 

173.  An if statement, embedded within the if statement at line 804, is initiated; 
so if: 

a.  prop.dist, the path distance, is less than or equal to zero,  or: 
b.  prop.dist, is greater than propa.dlsa, and; 
c. if prop.dist is greater than propa.dx, indicating that we are in the 

troposcatter (scatter) range, then: 
d.  prop.aref is set to be equal to: propa.aes + propa.ems * prop.dist; 

 
Line 831:   if (prop.dist>propa.dx) 
   prop.aref=propa.aes+propa.ems*prop.dist; 
 



174. An else statement provides an alternative path to the if statement directly 
above, which is still embedded within the the if statement in Step 38; so if:  

a. prop.dist, the path distance, is less than or equal to zero,  or: 
b.  prop.dist, is greater than propa.dlsa, indicating we are past the line-of-

sight range for a smooth earth situation, and; 
c. if prop.dist is equal to or less than propa.dx, indicating that we have not 

yet arrived at the distance where diffraction dominance rolls over to 
(tropo)scatter dominance, ( the combination of b. and c. therefore 
indicating that we are in the diffraction dominant area) then: 

d.  prop.aref is set to be equal to: propa.aed + propa.emd * prop.dist; 
 
Line 833:  else 
   prop.aref=propa.aed+propa.emd*prop.dist; 
 } 
 
Here we have a problem; an omission. The else statement in Step 38 only allows the 
else statement on Line 833 to act to switch the mode from line-of-sight to diffraction 
mode for a smooth earth situation, at the point where the path length exceeds the sum 
of the calculated smooth earth horizon distances.  There is no provision to switch line-
of-sight mode to diffraction mode, at the point when an obstruction blocks the horizon 
for the transmitter site.  Therefore, the string mode propagation status printout from 
point_to_point, lies in outputting “Diffraction Mode” after passing the first obstacle, as 
the line-of-site mode actually continues until the path length exceeds the sum of the 
smooth earth horizon distances.  
 
To make this subroutine operate to match the status printout from point_to_point, and 
correctly switch from line of sight mode calculation of aref to diffraction mode 
calculation of aref at the first obstruction, it is only necessary to add the following if 
statements, just after the last bracket for the if statement that starts on line 804:  
 
 if (prop.dist<propa.dx); 
  { 
  if (prop.dist>propa.dla); 
   prop.aref=propa.aed+propa.emd*prop.dist; 
  } 
 

175. The subroutine lrprop then sets prop.aref, the reference attenuation, to be 
equal to the greater of prop.aref or zero, and then returns the value of prop.aref..  

 
Line 837: prop.aref=mymax(prop.aref,0.0); 
} 
 
 
 
 
 



 
Chapter 13: Adiff 
 
Attenuation from Diffraction subroutine adiff. 
 
Note: Used with both point-to-point and area modes.  Called by lrprop.  Calls fht and 
aknife. 
 
From ITMD Section 10, 11, 12:      
 
The function adiff finds the “diffraction attenuation” at the distance d.  It uses a convex 
combination of smooth earth diffraction and double knife-edge diffraction.  A call with  
d = 0 sets up initial constants. 
 
Call inputs: 
 
d distance from transmit site at which diffraction attenuation is to be determined. 
  
Prop_type 
 
&prop  array prop with array elements: 
 
propa_type 
 
&propa array propa with array elements: 
 
 
 
defines private, or local, arguments:  
 
prop_zgnd   an array  containing values of the zgnd surface transfer impedance, with 
elements:  

prop.zgndreal,   the  real, (resistive) component of the surface transfer impedance;  
prop.zgndimag; the  imaginary, (reactive) component. 

 
 
wdl    
xd1 
afo, 
qk, 
aht, 
xht; 
 
a 
q 
pk 



ds 
th 
wa 
ar 
wd 
adiffv  attenuation due to diffraction over an obstace at a distance d. 
 
 
 
This subroutine: 
 

Uses d, prop_type, propa_type, and other information in arrays prop and propa in 
order to calculate the attenuation due to diffraction over an obstacle at a distance d 
using a convex combination of smooth earth diffraction and double knife-edge 
diffraction.   
 
176.   An if statement is initiated; it operates from lines 225 to 254.  If d is not 

equal to zero, go to the else statement in step 13 below, on line 256.  If d is equal 
to zero:  

 
a. q is set to be equal to prop.hg[0] times prop.hg[1], the product of the 

transmit antenna height above ground level, multipled by the receive 
antenna height above ground level; units in meters, so output is in square 
meters.   

b. qk is set to be equal to the product of the effective height of the transmit 
antenna, multipled by the effective height of the receive antenna, less the 
value of  q; output is in square meters.   

 
Line  225: if (d = = 0) 

  q=prop.hg[0]*prop.hg[1]; 
   qk=prop.he[0]*prop.he[1]-q; 
 

177. A second if statement is initiated within the first; if prop.mdp, the mode of 
the propagation model, is less than zero, indicating operation in the point-to-point 
mode, the value of q is increased by 10. 

 
Line 230:  if (prop.mdp<0.0) 
                q+=10.0; 
                        

178. wdl is set to be equal to the square root of ( 1 + qk/q). 
 
Line 233:  wd1=sqrt(1.0+qk/q); 
 

179. xdl is set to be equal to propa.dla + propa.tha/prop.gme. 
 
Line 234: xd1=propa.dla+propa.tha/prop.gme; 



 
180. q is reset to be equal to the terrain irregularity parameter, dh (a.k.a. delta h 

or ∆h), multiplied by the distance compensation term (1.0-0.8*exp(-
propa.dlsa/50,000)), using a formula derived from Alg. (3.9).  See subroutine 
qlrps step 23, for the derivation. At this point, the value of q represents ∆h(s). 

 
Line 235:  q=(1.0-0.8*exp(-propa.dlsa/50e3))*prop.dh; 
   

181.  q is then further modified by setting it to be equal to the value of q 
obtained on line 235 in step 5 above, multiplied by 0.78*exp( -pow(q/16.0,0.25). 

 
This step utilizes the formula: 
 
 σh(s) =  0.78 ∆h(s) exp [− (∆h(s) /H)1/4 ]   with H = 16 meters.” Alg. (3.10) 
 
This formula, is found in the Algorithm, shows the relationship between ∆h and the 
terrain roughness factor σh used in Tech Note 101.  Here it is used to convert the 
value stored in q from the value for ∆h(s) to the value for σh(s). 

 
Line: 236:  q*=0.78*exp(-pow(q/16.0,0.25)); 

 
182. The value of afo is set to be equal to the lesser of: 

a. 15 
b. (2.171*log(1.0+4.77e-4*prop.hg[0]*prop.hg[1]*prop.wn*q));  

Where:   
hg[0] is the transmit antenna height above ground in meters; 
hg[1] is the receive antenna height above ground in meters; 

   prop.wn is the wave number, (equal to freq. in MHz/47.7) 
q is currently equal to the value of σh(s), the terrain roughness 
factor with distance correction. 

 
183. The value of qk is set to be equal to 1/(absolute value of prop_zgnd).  
 
prop_zgnd is a complex double, representing the earth’s surface transfer impedance  
with two elements;  a real element, the resistance value, and an “imaginary” value, 
the reactance, which describes the phase mismatch between the voltage and the 
current, in terms of a capacitive value (current peak leads voltage peak) or a inductive 
value (current peak lags behind voltage peak).    

 
 Line 238:  qk=1.0/abs(prop_zgnd);  
 

184.  The value of aht is set to be equal to 20.0. 
 

Line 239: aht=20.0; 
 
185. The value of xht is set to be equal to 0.0. 



 
Line 240: xht=0.0; 
 

186. A for statement is initiated with two loops, j=0 and j=1.  The for loop 
starts with j=0: 

 
 Line 242:   for (int j=0; j<2; ++j) 
  { 
 

a. The value of a is set to be equal to: 0.5*(prop.dl[0])2/prop.he[0]; 
   Where: 

prop.dl[0] is the distance from the transmit site to the horizon  
    prop.he[0] is the effective height of the transmit site 
 
Line 245:   a=0.5*(prop.dl[j]*prop.dl[j])/prop.he[j]; 
 

b. The value of wa is set to be equal to (a*prop.wn)1/3 
Where:   
 a was determined in step 11(a.).  

   prop.wn is the wave number, = (frequency in MHz/47.7)   

Line 246: wa=pow(a*prop.wn,THIRD); 
 

c.  The value of pk is set to be equal to qk/wa. 
Where:   
 qk was determined in step 8.  

   wa was determined in the last step, 11(b). 
 
Line 247: pk=qk/wa; 
 

d. The value of q is again reset, this time to be equal to:  
 ((1.607-pk)*151.0*wa*prop.dl[0]/a; 

 
Line 248: q=(1.607-pk)*151.0*wa*prop.dl[j]/a; 
 

 
e. The value of xht is increase by adding the value of q. 

 
Line 249: xht+=q; 
 

f. Subroutine fht is called with inputs (q,pk). Subroutine fht then returns fhtv, the 
height-gain over a smooth spherical earth for use with the three-radii method.  
The value of aht is increased by adding the value returned by fht.. 

 
Line 250:  aht+=fht(q,pk); 
        } 
 



The for loop then repeats, with j=1: 
 

g. The value of a is set to be equal to: 0.5*(prop.dl[1])2/prop.he[1]; 
   Where: 

prop.dl[0] is the distance from the receive site to the horizon  
    prop.he[0] is the effective height of the receive site 
 

h. The value of wa is set to be equal to (a*prop.wn)1/3 
Where:   
 a was determined in step 11(g.).  

   prop.wn is the wave number, = (frequency in MHz/47.7)  

i.  The value of pk is set to be equal to qk/wa. 
Where:   
 qk was determined in step 8.  

   wa was determined in the last step, 11(h). 
 

j. The value of q is again reset, this time to be equal to:  
 ((1.607-pk)*151.0*wa*prop.dl[1]/a; 

 
k. The value of xht is increase by adding the value of q. 

 
l. Subroutine fht is called with inputs (q,pk). Subroutine fht then returns fhtv, the 

height-gain over a smooth spherical earth for use with the three-radii method.  
The value of aht is increased by adding the value returned by fht.. 

  
The for loop completes, and: 

  
187.  adiffv is then set equal to zero. 

 
Line 253: adiffv=0.0; 

    } 
 

188. The if statement on line 225 has a matching else statement on line 256.  
Therefore, if the input value d is not equal to zero:  

 
Line 256: else 
         { 
 

a. th is set to be equal to propa.tha + d*prop.gme; 
Where:  

propa.tha, the total bending angle, set in lrprop; .  
  d is the distance at which the attenuation is to be calculated. 

gme is the earth’s effective radius. 
 
Line 258:  th=propa.tha+d*prop.gme; 
 



b. ds is set to be equal to d − propa.dla; 
Where:  
 d is the distance at which the attenuation is to be calculated. 
 propa.dla is the total horizon distance.  

 
Line 259: ds=d-propa.dla; 
 

c. q is reset to be equal to 0.0795775*prop.wn*ds*th*th; At this point, the 
value of q represents ∆h(s). 

 
Line 261:  q=0.0795775*prop.wn*ds*th*th; 
 

d.  subroutine aknfe is called twice;  
the first time with input: (q*prop.dl[0]/(ds+prop.dl[0])),  
and the second time with input: (q*prop.dl[1]/(ds+prop.dl[1]));  
in each case, aknfe reports out a, the attenuation due to a single knife edge 
diffraction; the Fresnel integral (in decibels) as a function of the input, v2.  
Adiffv is then set to equal the sum of the two outputs from aknfe. 

  
Line 262:   
adiffv=aknfe(q*prop.dl[0]/(ds+prop.dl[0]))+aknfe(q*prop.dl[1]/(ds+prop.dl[1])); 
 

e. a is set to equal ds/th 
 
Line 263:  a=ds/th; 
 

f. wa is set to be equal to (a*prop.wn)1/3 
 
Line 264:  wa=pow(a*prop.wn,THIRD); 
 

g. pk is set to equal the value of qk/wa. 
 
Line 265:  pk=qk/wa; 
 
 q is reset to be equal to (1.607-pk) * 151.0 * wa * th + xht   
 
Line 266:  q=(1.607-pk)*151.0*wa*th+xht; 
 

h. ar is set to be equal to 0.05751 * q – 4.343 * log(q) – aht  
 
Line 267:  ar=0.05751*q-4.343*log(q)-aht; 
 

i.  q is reset to be equal to:  
 

(wd1+xd1/d)*mymin(((1.0-0.8*exp(-d/50e3))*prop.dh*prop.wn),6283.2) 
 



Line 268:  q=(wd1+xd1/d)*mymin(((1.0-0.8*exp(-d/50e3))*prop.dh*prop.wn),6283.2); 
 

j. wd is set to be equal to: (25.1/(25.1+sqrt(q))) 
 
 
Line 269:  wd=25.1/(25.1+sqrt(q)); 
 

k. adiffv is set to be equal to: ar * wd + (1.0-wd) * adiffv + afo  
 
Line 270: adiffv=ar*wd+(1.0-wd)*adiffv+afo; 
                 } 
 

189. The subroutine then returns the value of adiffv, the “diffraction 
attenuation” at the distance d. 

 
 return adiffv; 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 14: Fht 
 
Function Height-Gain for Three-Radii method; subroutine: fht. 
 
Note: Used with both point-to-point mode and area mode.  Called by adiff.  
 
From ITMD Section 14: 
 
Calculates the height-gain over a smooth spherical earth – to be used in the “three radii” 
method.  The approximation is that given in [Alg 6.4]. 
 
Note that in the Algorithm, in the first paragraph in Section 6, “Addenda – numerical 
approximations”, from which the formulas below are taken, George Hufford states: 

 
“Part of the algorithm for the ITM consists in approximations for the standard 
functions that have been used.  In these approximations, computational simplicity 
has often taken greater priority than accuracy.”  

 
Call inputs: 
& x 
& pk 
 
Declares private, or local, arguments:  
w 
fhtv height gain over a smooth spherical earth 
 
This subroutine: 
 

190. Initiates an if statement.  If x is less than 200, then w is set to be = ( 
−log(pk)). 

 
Line 133:     if (x<200.0) 
   if (x<200.0) 

  w=-log(pk); 
  

191. An if statement is nested within the first if statement.  If x is less than 200, 
and; pk is less than 1.0e−5, or if (x*w3) is greater than 5,495, then:  

a. fhtv is set to be equal to −117.0; 
b. An if statement is nested within the second if statement.  Therefore: 

(1)  if x is less than 200,  and: 
(2)  pk is less than 1.0e−5, or (x*w3) is greater than 5,495, and: 
(3) x is greater than 1.0, then: 

c. fhtv is reset to be equal to 17.372 *log (x) + value of  fhtv from 2(a). 
 

Line 138: if (pk<1.0e-5 || x*w*w*w > 5495.0) 



  { 
   fhtv=-117.0; 
 
   if (x>1.0) 
    fhtv=17.372*log(x)+fhtv  [Alg. 6.5] 

} 
  

192. The second if statement, found on line 138, has an offsetting else 
statement.  So if: 

a. x is less than 200,  and: 
b.   pk is not less than 1.0e−5, or (x*w3) is not greater than 5,495, then: 
fhtv is reset to be = (2.5e −5)*(x2/pk) −(8.686*w) −15.0 [Alg. 6.6] 

 
Line 145: else 
   fhtv=2.5e-5*x*x/pk−8.686*w−15.0; 

 } 
 
193. The first if statement, found on line 133, has an offsetting else statement.  

So if x is greater than or equal to 200, then: 
 
fhtv is reset to be = 0.05751*x−4.343*log(x)   [Alg. 6.3; almost]  
  

The Algorithm states that this equation, in fact,  should be G(x) (a.k.a fhtv) = 
.05751x – 10 log(x). There is an undocumented fudge factor of .4343 applied here; 
see full discussion and mathematical proof of result mismatch in Chapter 16, Aknfe, 
where the fudge factor first appears (going by line number) in the ITMDLL.cpp.   

 
  An if statement is nested within this else statement.  So if the value of x is greater 
than or equal to 200, and less than 2000, then: 

a. w is set to be equal to 0.0134*x*exp(−0.005*x) 
b. fhtv is reset to be = (1.0-w)* fhtv+w*(17.372*log(x) −117.0)  

 [Alg. 6.4]  
 

Line 149: else 
  { 
   fhtv=0.05751*x-4.343*log(x); 
   if (x<2000.0) 
   { 
    w=0.0134*x*exp(-0.005*x); 
    fhtv=(1.0-w)*fhtv+w*(17.372*log(x)-117.0); 
   } 
  } 
  

194. Subroutine fht then returns fhtv, the height-gain over a smooth spherical 
earth.    

 



 
 
 
 
 
Chapter 15: Aknfe 
 
 
 
Attenuation from Knife Edge Diffraction subroutine aknfe. 
 
Note: Used with both point-to-point and area modes.  Called by adiff. 
 
From ITMD Section 13:      
 
The function aknfe computes the attenuation due to a single knife edge – the Fresnel 
integral (in decibels) as a function of v2.  The approximation is that given in [Alg. 6.1]. 
 
Call inputs:  & v2  
 
Note:  Subroutine adiff calls subroutine aknfe twice; the input value is still being 
calculated in the calling statement.  The input value, v2,  received from adiff represents 
the  square of the value v (a.k.a. v2) found in [TN101 7.2 and Alg. 6.1]. 
 
defines private, or local, arguments:  
 
double a attenuation due to a single knife edge 
 
This subroutine: 

 
195. An if statement is initiated; if v2 is less than 5.76: 

a is set to be equal to: 6.02 + 9.11 * sqrt(v2) −1.27 * v2 
 
Line 122: if (v2<5.76) 
   a=6.02+9.11*sqrt(v2)-1.27*v2; 
 

196. The following else statement provides that if v2 is >  5.76,  
a is set to be equal to: 12.953 + 4.343 * log(v2). 

 
Here we have a major inconsistency.   
 
In Tech Note 101, equation 7.2 states that  
 

“if v is greater than 3,  A(v,0) may be expressed by:  
 



A(v,0) is approximately equal to: 12.953 + 20 log v   (units  in) dB.    (7.2)” 
 

 
In the Algorithm, Section 6., George Hufford states:  
  
 “We have (for v>0) 

Fn(v) is approximately equal to: 
 
6.02 +9.11*v – 1.27v2  if v< 2.40,  
12.953 + 20 log v  otherwise  (6.1)” 
 

Here, the formula in the code does match the equations in TN101 and the Algorithm 
when v is less than 2.40  (i.e., when (v)2 is less than 5.76).   The equation in the code, 
however, has an additional factor added; instead of  the log function being 
multiplied by 10, it is multiplied by 4.343, i.e. the 10 is being multiplied by a factor 
of 0.4343.  This is contrary to the documentation in Tech Note 101 and in the 
Algorithm.  This unexplained factor, and therefore inconsistent code, appears in the 
Appendix A to “ A Guide to the Use of the ITS Irregular Terrain Model in the Area 
Prediction Mode”, NTIA Report TR-82-100, April 1982; so this factor also exists in 
the FORTRAN versions of ITM 1.2.2.   
 
To see which is correct, we test the results at the break point, where v = 2.40 and v2 is 
equal to 5.76.  The break point should provide an equal and smooth transition; the results 
for both formulas should match.   By setting v2 equal to 5.76), and comparing the results 
from the formulas in the code, for the uncontested formula for v if v< 2.40, we get: 
 
 For v2 = 5.76,  a = 6.02 + 9.11 * sqrt(v2) – 1.27*v2  = 20.569  dB 
  
And using the formula found after the else statement: 
 
 For v2 = 5.76,  a =  12.953 + 4.343*log(v2) =  16.2555  dB  
 
By comparison, using the equation 6.1 in the Algorithm, which is mathematically the 
same as {TN101 7.2}:  
 
 For v2 = 5.76, and therefore v = 2.40; Fn (v) = 12.953 + 20 log v. = 20.557 dB 
 
The formula in the code produces an answer that differs by more than 4 dB, a significant 
difference; the formula in the Algorithm and Tech Note 101 provides an answer that 
differs by only  .012 dB; an essentially identical answer.  
 
This is not a singular error; the same conversion factor is utilized the same way in 
nine locations.  Including its appearance here, it also appears twice in subroutine 
ascat; twice in subroutine h0f; and once each in  fht; ahd; adiff; and alos. Again, 
where the documentation allows, a 4.343 appears where a 10 should be.   All appear 
in subroutines involved in the calculation of diffraction and scatter losses; sections 



that were revised after the issuance of ESSA technical report ERL 79-ITS67,(1968).  
The factor does not appear in the source code documented in ERL79-ITS67. 
 
There is no mention of this factor in the documentation found.  Therefore, the 
obvious conclusion is that the .4343 factor is a “fudge” factor; inserted to make the 
program’s results more closely match the measured empirical values to which they 
were compared.  This was an obvious attempt to correct program results that are 
faulty due to the errors here found. 

 
Line 124: else 
        a=12.953+4.343*log(v2); 
 

197. Subroutine aknfe returns the value of a, the attenuation due to a single 
knife edge. 

   
Line 126:   return a; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
Chapter 16: Alos 
 
 
Attenuation for Line of Sight subroutine; alos. 
 
Note: Used with both point-to-point and area modes.  Called by lrprop.  Calls abq_alos, 
mymin, and mymax. 
 
From ITMD Sections 17, 18, 19:      
 
The function alos computes the line-of-sight attenuation for a distance d. It uses a convex 
combination of plane earth fields and diffracted fields.  A call with d = 0 sets up initial 
constants.   
 
Call inputs:   
double d  
prop_type  
& prop  array with constants 
propa_type  
& propa array with constants 
 
 
 
defines private, or local, arguments:  
 
complex<double> prop_zgnd (prop_zgndreal,prop.zgndimag); 
static double wls 
complex<double> r 
double s 
double sps 
double q 
double alosv 
 
 
In this subroutine: 

 
198. An if statement is initiated; if d is equal to zero, then: 
 

a. wls is set to be equal to: 0.021, divided by (0.021+prop.wn*prop.dh), and 
all of which is divided by the greater of 10,000 or propa.dlsa; 
 



where  
   prop.wn is the wave number, = frequency/47.7 MHz *meters 

prop.dh is delta h, or ∆h, the terrain irregularity parameter 
propa.dlsa is the sum of the two smooth earth horizon distances; 
from the terminals to the horizon over smooth earth    

 
b. alosv is set to be equal to zero. 

 
Line 405:  if (d= = 0.0)  
 
  { 
   wls=0.021/(0.021+prop.wn*prop.dh/mymax(10e3,propa.dlsa)); 
   alosv=0.0; 
  } 

 
199. An else statement follows, so if d is not equal to zero, then: 

 
a. q is set to be equal to (1.0 - 0.8(-d/50,000))*prop.dh; 

 
where 

   prop.dh is delta h, or ∆h, the terrain irregularity parameter 
 

b. s is set to be equal to 0.78 * q *10^(-(q/16.0)0.25)); 
   

c.  q is set to be equal to the sum of prop.he[0]+prop.he[1]; 
where 
 prop.he[0] is the effective height of the transmit antenna 

prop.he[1] is the effective height of the receive antenna 
  

d. sps is set to be equal to q/sqrt(d*d+q*q); 
  

e. r is set to be equal to:  
(sps-prop_zgnd)/(sps+prop_zgnd)*exp(-mymin(10.0,prop.wn*s*sps)); 

 
 

f. The subroutine abq_alos is called with input (r).   
 

The subroutine abq_alos , in its entirety, consists of: 
 

double abq_alos (complex<double> r) 
{ 

    return r.real()*r.real()+r.imag()*r.imag(); 
} 

 
The subroutine abq_alos returns r.real()*r.real()+r.imag()*r.imag(),   
and  q is set to be equal to  r.real()*r.real()+r.imag()*r.imag(); 



 
Line 411:   else 
       { 
  q=(1.0-0.8*exp(-d/50e3))*prop.dh; 
  s=0.78*q*exp(-pow(q/16.0,0.25)); 
  q=prop.he[0]+prop.he[1]; 
  sps=q/sqrt(d*d+q*q); 
  r=(sps-prop_zgnd)/(sps+prop_zgnd)*exp(-mymin(10.0,prop.wn*s*sps)); 
  q=abq_alos(r); 
 
  

200. An if statement is initiated; if q is less than 0.25 or if q is less than sps, 
then: 

   r is set to be equal to r*(sps/q)1/2; 
 
 Line 420:  if (q<0.25 || q<sps) 
   r=r*sqrt(sps/q); 
 

201.  alosv is then set to be equal to [propa.emd * d + propa.aed]; 
where: 

  propa.emd has been set equal to (a4-a3)/(d4-d3) in lrprop     
d       is the path distance 

  propa.aed  has been set equal to a3−propa.emd*d3 
 

  And q is reset to be equal to: prop.wn*prop.he[0]*prop.he[1]*2.0/d; 
  where: 
   prop.wn is the wave number 

prop.he[0] is the effective height of the transmit antenna 
prop.he[1] is the effective height of the transmit antenna 
d  is the path distance 

 
 Line 423: alosv=propa.emd*d+propa.aed; 
  q=prop.wn*prop.he[0]*prop.he[1]*2.0/d; 
 
  

An if statement is initiated; if q is greater than 1.57, then q is reset to be equal 
to: 3.14- (2.4649/q). 

  
Line 426: if (q>1.57) 
   q=3.14-2.4649/q; 
 

202.   
The subroutine abq_alos is called with input (complex<double>(cos(q),-
sin(q))+r)).   
 

The subroutine abq_alos , in its entirety, consists of: 



 
double abq_alos (complex<double> r) 
{ 

    return r.real()*r.real()+r.imag()*r.imag(); 
} 

 
The subroutine abq_alos, also described in Chapter 4 as a utility subroutine, 
returns r.real()*r.real()+r.imag()*r.imag().  
 
alosv is then reset to be equal to: 

 
(-4.343*log((return from abq_alos: r.real()*r.real()+r.imag()*r.imag() -
alosv)*wls+alosv; 

 
Line 429:   alosv=(-4.343*log(abq_alos(complex<double>(cos(q),-sin(q))+r))-

alosv)*wls+alosv; 
  } 
 
NOTE: Here again we find the use of the fudge factor .4343 multiplied to 10, the 
constant found in  The Algorithm, Tech Note 101, and ESSA Technical Report 
ERL79-ITS 67.  
 
 

203. The subroutine alos returns alosv, the value of the line of sight 
attenuation; 

 
Line 432:  return alosv; 

      } 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Chapter 17: Ascat 
 
Attenuation from Scatter subroutine, (Ascat.); ascat 
 
Note: Used with both point-to-point and area modes.  Called by lrprop. Calls mymin, 
mymax, h0f, and ahd. 
 
From ITMD Sections 22, 23, and 24:      
 
The function ascat finds the “scatter attenuation” for the path distance d.   It uses an 
approximation to the methods of NBS TN101 with checks for inadmissible situations.  
For proper operation, the larger distance  (d = d6  must be the first called.  A call with d = 
0. sets up initial constants.  
 
From the Algorithm, Section 4.3.1: 
 
Computation of this function uses an abbreviated version of the methods described in 
Section 9 and Annex III.5 of NBS Tech Note 101. 
 
Note: THIS SUBROUTINE IS ELIGIBLE FOR UPDATE AND REVISION: On page 
11 of the Algorithm, last paragraph, George Hufford stated:  
 
 “A difficulty with the present model is that there is not sufficient geometric data 
in the input variables to determine where the crossover point is.   This is resolved by 
assuming it to be midway between the two horizons.”   
 
This statement and concept should be reviewed to determine if the “sheer magnitude” of 
data available in today’s terrain databases is adequate to implement a more accurate 
geometric determination of the crossover point. 
 
For now, here is how the current version of the ITM.cpp works: 
 

Note:  Not defined in the Algorithm section 4.3.1 below, the k in [Alg. 4.62] is the wave 
number, which is equal to the frequency in MHz divided by 47.7. 
 
 
From the Algorithm, with clarifications: 
 
“First, set: 
  θ = θe +γe

s       [Alg. 4.60]  
  θ’ = θe1 +θe2 + γe

s      [Alg. 4.61] 
  rj  = 2 * k  *θ’ * hej          for  j = 1, 2.   [Alg. 4.62] 
 

If both r1  and  r2  are less than 0.2, the function Ascat is not defined, (or is infinite).   



 
Otherwise, we put    
 
 Ascat(s)  = 10 * log(k*H*θ4 )  +  F (θs , Ns ) + H0  (4.63), i.e. [Alg. 4.63] 
 
Where F (θs , Ns ) is the function shown in Figure 9.1 of Tech Note 101, H0 is the 
“frequency gain function”, and H is 47.7 meters.   
 
The frequency gain function H0 .is a function of: 
 

r1 , defined in {Alg. 4.62] 
  r2,  defined in {Alg. 4.62] 

ηs, the scatter efficiency factor, and  
the “asymmetry factor”, which we shall here call ss.   

 
A difficulty with the present model is that there is not sufficient geometric data in the 
input variables to determine where the crossover point is.   This is resolved by assuming 
it to be midway between the two horizons   The asymmetry factor, for example, is found 
by first defining the distance between horizons 
 
   ds = s − dL1 − dL2     [Alg. 4.64]   
 
whereupon 
   ss  =  (dL2 + ds /2) / (dL1 + ds /2)   [Alg. 4.65]   
 
There then follows that the height of the crossover point is 
 
   z0 = (ss * d * θ’ ) / ( 1 + ss )2     [Alg. 4.66] 
 
[Ed. where   
 d is the total path distance 

θ’ is the angular distance, defined in [Alg. 4.61], a.k.a.θoo, as shown on Figure 6.1 
of TN101 on page 6 – 8.] 
 
and then  
 
 ηs  = ( z0 / Z0 ) * [ 1 + (0.0.031 − Ns  * 2.32 * 10−3 + Ns

2
  * 5.67 * 10−6 )e−( z0 / Z1)^6 ] 

 
        (4.67), i.e. [Alg. 4.67] 
where 

 
Z0  = 1.756 km or 1756 meters  
Z1 =  8.0 km or 8000 meters 

 [ Ed. (and Ns is the surface refractivity of the atmosphere, a.k.a ens or  prop.ens)] 
 



The computation of  H0  then proceeds according to the rules in Section 9.3 and Figure 
9.3 of Tech Note 101.  
 
The model requires these results at the two distances s = d5, d6 described above.  One 
further precaution is taken to prevent anomalous results.  If, at d5, calculations show that 
H0 will exceed 15 dB, they are replaced by the value it has at d6. This helps keep the 
scatter mode slope within reasonable bounds.”  
 
 
Discussion: 
 
TN101 defines “launch angles” for the signal path line as it leaves the transmit antenna 
toward the receive antenna, and from the receive antenna as received from the transmit 
antenna.  These launch angles are defined in Section 6.4 of TN101, and are designated as 
θet, the angular elevation of the transmit horizon ray, and θer, the angular elevation of the 
receive horizon ray.  They are shown on Figure 6.1 of TN101. They are calculated in 
subroutine hzns and provided to ascat as values stored in prop.the[0] and prop.the[1].   
 
The equation [Alg. 4.60] can be confusing here, due to its poorly defined use of θ.  Alg. 
4.60 is attempting to explain that in the general case, a launch angle must be adjusted for 
the earth’s curvature; and is easier to understand if we give examples: 
 
   θt = θet +γet

s     [Alg. 4.60a]  
   θr = θer +γer

s     [Alg. 4.60a] 
 
 where 
  θet is the transmit site launch angle as shown on TN101 Figure 6.1. 
  θer is the receive site launch angle as shown on TN101 Figure 6.1. 
  s is either the asymmetry factor, or a distance 

at the terminals, γe(t,r)
s  = dL(t,r) / a  =  dL(t,r) * gme, 

 where  
dLt is the distance from the transmit site to the horizon or obstacle, in 
meters.  
dLr is the distance from the receive site to the horizon or obstacle, in 
meters. 
gme is the earths curvature, equal to 1/a where a is the effective earths 
radius shown in Figure 6.1 of TN101.  Here, a is in meters, so gme is in 
1/meters. 
 

In TN101, the angular distance θ  is defined as:  
  

θ = θοο  = d / a  + θet + θer    [TN101 6.14] 
 

 where, as described in section 6.4 and on diagram 6.1 of NBS TN101; 
d is the total path distance as shown on figure 6.1 
a is the effective earth’s radius, equal to 1/gme, the effective earth’s curvature.. 



θet is the angle between the horizontal, at the transmitter site, and a line between 
the transmit antenna and the horizon (or the top of the obstruction).  This is the 
value stored in prop.the[0]. 
θer is the angle between the horizontal, at the receive site, and a line between the 
receive antenna and the horizon (or the top of the obstruction).  This is the value 
stored in prop.the[1]. 

 
In [Alg. 4.61], we again find γe

s replacing the d/a term in [TN101 6.14]. 
 
 

The angular distance θοο is the angle, as shown on diagram 6.1 of NBS TN101, between a 
line starting from the transmit antenna and touching the transmit horizon or the top of the 
receive obstacle, and a line starting from the receive antenna and touching the receive 
horizon or the top of the receive obstacle.  
  
TN101 also defines “launch angles” for the signal path line as it grazes the horizon, (or 
crosses the top of the obstacles).  These launch angles, or angular elevation of a horizon 
ray, are defined as the angle between the horizontal at the horizon (or obstacle), and the 
signal path line grazing the horizon (or touching the top of the obstacle), and in TN101 
are designated as θot, the angular elevation of the transmit horizon ray, and θor, the 
angular elevation of the receive horizon ray, as shown on Figure 6.1 of TN101.  These 
are calculated using:  
 
  θot =  θet + dLt/a θor =  θer + dLr/a   [TN101 6.16]  
 
 where  

d is the total path distance as shown on figure 6.1, and input to ascat as 
input d 
θet is the angle between the horizontal, at the transmitter site, and a line 
between the transmit antenna and the horizon (or the top of the 
obstruction).  This is the value stored in prop.the[0]. 
θer is the angle between the horizontal, at the receive site, and a line 
between the receive antenna and the horizon (or the top of the 
obstruction).  This is the value stored in prop.the[1]. 
dLt is the distance from the transmit site to the horizon or obstruction, 
stored in prop.dl[0]. 
dLr is the distance from the receive site to the horizon or obstruction stored 
in prop.dl[1]. 
a is the effective earth’s radius, equal to 1/gme, the effective earth’s 
curvature, the value of which is stored in prop.gme. 

 
If the earth is smooth, θ is approximately equal to Ds/a,  

where: 
  “a”     is the effective earth’s radius (equal to 1/gme), and; 



  Ds  (a.k.a. ds in the code) is the distance between the transmitter site 
horizon (or obstacle) location, and the receive site horizon (or 
obstacle) location.  

 
 and where: Ds = d − dLt − dLr    [TN101 6.17] 

 
 
In order to properly calculate tropospheric scatter losses, Longley-Rice generates a “path 
asymmetry factor, identified in NBS TN101 as “s”.  In order to do this, TN101 starts by 
defining the angles αoo and βoo.  On page 6.8 of TN101, Volume I, Figure 6.1 shows a 
graphic representation of the two angles.  αoo is the angle at the transmit site between a 
line drawn from the transmit antenna and grazing the horizon or tallest visible obstacle, 
and a theoretical line drawn directly from the transmit antenna to the receive antenna 
(passing through the earth for a beyond-the-horizon path).  βoo is the same angle from the 
point of view of the receive antenna. 
 
In NBS TN101, for the general case of irregular terrain, the angles αoo and βoo are 
calculated using: 
 
  αoo =  (d /2 * a)  + θet  + (hts − hrs)/ d   [TN101 6.18a] 
 

βoo  =  (d /2 * a)  + θer  + (hrs − hts)/ d   [TN101 6.18b] 
 
 where:  

 d is the total path distance as shown on figure 6.1, and input as d 
a is the effective earth’s radius, equal to 1/gme, the effective earth’s 
curvature, the value of which is stored in prop.gme. 
θet is the angle between the horizontal, at the transmitter site, and a line 
between the transmit antenna and the horizon (or the top of the 
obstruction).  This is the value stored in prop.the[0]. 
θer is the angle between the horizontal, at the receive site, and a line 
between the receive antenna and the horizon (or the top of the 
obstruction).  This is the value stored in prop.the[1]. 

  hts is the transmit site antenna elevation, stored in prop.he[0] 
hrs is the receive site antenna elevation, stored in prop.he[1]. 

 
 
These angles are positive for beyond-horizon paths.  To allow for the effects of a non-
linear refractivity gradient, αoo and βoo are modified by corrections ∆αo and ∆βo
 

where:  
  αo is defined as αoo + ∆αo       [TN 6.19a]  

and  
βo is defined as βoo + ∆βo      [ TN 6.19b]  

 



To give the angles αo and βo, whose sum is the angular distance theta, θ , and whose ratio 
defines a path asymmetry factor “s”. 

 
θ =  αo + βo        s =  αo  / βo   [TN 6.19c] 

 
 
The corrections ∆αo and ∆βo  are functions of  the angles θot and θor , (see [TN 6.16], and 
of the distances dst  and dsr  from each horizon obstacle to the point where the horizon 
rays cross over.  These distances are approximated as:  
 
 dst  =  d (βoo / θoo) − dLt  ,  dsr  =  d (αoo / θoo) − dLr   [TN 6.20] 
 
 
The sum of  distances dst  and dsr  is the distance Ds between horizon obstacles, defined by 
[TN 6.17].  Over a smooth earth, dst  = dsr  =  Ds.  
 
For small θot or θor , no correction ∆αo or ∆βo is required for values of dst or dsr less than 
100,000 meters.  When both ∆αo or ∆βo are negligible;   
 
  θ  =  θoo =  αoo + βoo      [TN101  6.22] 
 
which is the same as [TN101 6.14], i.e.: 
 

θ  =  θoo =  αoo + βoo = d / a  + θet + θer  [TN101 6.14 with 6.22] 
 
If either θot or θor is negative, indicating an obstruction taller than the terminal height, 
then compute:  
  
 d’st  =   dst − | α * θot |     or   d’sr  =   dsr − | α * θor |   [TN101 6.23] 
   
substitute d’st for dst or d’sr for dsr, and read figure 6.9, on page 6-16 of TN101, using θot = 
0 or θot = 0. [needless to say; the compeuter code cannot do this without using an 
approximation. 
 
If either θot or θor is greather than 0.1 radian and less than 0.9 radian, determine  
∆αo or ∆βo for θot  = 0.1 radian and add the additional correction term 
 
 Ns (9.97 −  cot θ ot,r ) [ 1 − exp ( − 0.05 * dst,r) ] *  10−6  radians   
 
The bending of radio rays elevated more than 0.9 radian above the horizon and passing 
all the way through the atmosphere is less than 0.0004 radian, and may be neglected. 
 
 
Referring to the information obtained from the Algorithm above: 
 



The equation for ηs, the scatter efficiency factor, given in [Alg. 4.67], is derived from an 
equation in TN101: 
 
ηs  = 0.5696* ho*[1+ (0.0.031−Ns *2.32*10−3+5.67*Ns

2 *10−6)exp(−3.8 * ho
6 *10−6)] 

 [TN101 9.3a]: 
where  

z0 is represented by ho  
Z0, stated as 1,756 meters in the Algorithm, is replaced by 1.7556 kilometers, so 
1/1.7556 = 0.5696;  
Z1 =  8.0 km or 8000 meters, and [1/(8.0)]6 =  (.125) 6  =  3.8 

 
 
Call inputs:   
 
d  the total path distance 
Prop_type 
&prop  array with elements 
propa_type 
&propa array with elements 
 
defines private, or local, arguments:  
 
Note: The following four arguments are static doubles: 
ad absolute value of the difference in distance between: the distance from the 

transmit site to the horizon, and the distance from the receive site to the horizon. 
rr ratio of the higher terminal’s effective height, (transmit or receive site antenna) to 

the lower terminal’s effective height 
etq  a term in the equation for ηs    
h0s frequency gain function for (s) smooth earth 
 
h0 frequency gain function 
r1 transmit site angle calculated in [Alg. 4.62] 
r2 receive site angle calculated in [Alg. 4.62] 
z0 the height of the crossover point of the horizon or obstacle grazing lines from the 

terminal antennas, above a line drawn between the two terminal antennas 
ss a.k.a. ss  the “asymmetry factor” 
et  
ett  
th a.k.a. theta prime, or θ’, the combined launch angle calculated in [Alg. 4.61] 
q  
 
 
In this subroutine: 
 

1. An if statement is initiated to prepare the initial scatter constants; if d is equal 
to zero, then: 



a. ad is set to be equal to the difference in distance, in meters, between: 
the distance from the transmit site to the horizon, prop.dl[0], and the 
distance from the receive site to the horizon, prop.dl[1].   

 
b. rr is set to be equal to the effective height of the transmit antenna, 

prop.he[0], in meters, divided by the effective height of the receive 
antenna, prop.he[1], in meters.  At this moment, the argument rr 
represents the ratio of the transmit antenna effective height to the 
receive antenna effective height.   

 
Line 282: if (d= =0.0) 
  { 
   ad=prop.dl[0]−prop.dl[1]; 
   rr=prop.he[1]/prop.he[0]; 
  

2.  A second if statement is initiated, nested within the first; so if d is equal to 
zero, and if ad is less than zero, then: 

a.  ad is made equal to −ad; as a result, the always positive resulting 
value stored in ad will represent the difference between the distances 
to the horizon from the transmit site and the receive site, measured in 
meters. 

b. rr is inverted, i.e. made equal to 1/rr. The argument rr then represents 
the dimensionless, and always positive, ratio of the higher terminal’s 
effective height, (transmit or receive site antenna) to the lower 
terminal’s effective height.   

 
Line 287: if (ad<0.0) 

  { 
   ad=-ad; 
   rr=1.0/rr; 
  } 
   

3. The subroutine then continues under the first if statement, if d=0, to: 
a. Set etq equal to [(5.67e−6∗prop.ens−2.32e−3)*prop.ens+0.031].  
 

What is this for?  from: [Alg. 4.67]:  
ηs  = ( z0 / Z0 ) * [ 1 + (0.0.031 − Ns  * 2.32 * 10−3 + Ns

2
  * 5.67 * 10−6 )e−( z0 / Z1)^6 ];  

from this equation, we take the term: (0.0.031 − Ns  * 2.32 * 10−3 + Ns
2

  * 5.67 * 10−6 ); 
re-ordering the term, we get: [(5.67 * 10−6 *  Ns − 2.32 * 10−3 )* Ns + 0.0.031]; 
replacing Ns, the surface refractivity of the atmosphere, with the value of Ns a.k.a. ens, 
stored in prop.ens, we get: [(5.67e−6∗prop.ens−2.32e−3)*prop.ens+0.031].  This term is 
later used to calculate the value for argument et , a.k.a. ηs, at line 321.  

 
NOTE: There is a QUIRK here, AS etq, a static double argument, ONLY GETS 
CALCULATED IF D == 0.  LRPROP does call ASCAT first with d = 0, at line 808, 
before calling with d = d6 and d5. 



 
b. Set h0s, a.k.a. H0(s), or the H0 frequency gain function over (s), 

smooth earth, equal to: –15. 
c. Set ascatv equal to 0.0.  

 
Line 293: etq=(5.67e-6*prop.ens-2.32e-3)*prop.ens+0.031; 
  h0s=-15.0; 
  ascatv=0.0; 
 
If at line 282, d was equal to zero, the program here jumps to line 345, and the program 
ends by returning a value of 0.0 for ascatv.     
 
If at line 282, d was not equal to zero, the program ignores lines 282 to 297, and proceeds 
to line 298, where:   
  

4. An else statement follows, and its action affects line 300 to 343.   
If d is not equal to zero, then the program proceeds to an if statement nested 
within the else statement.  If h0s is greater than 15, then h0 is set to be equal 
to h0s.  

 
Line 298:  else 
       { 
  if (h0s>15.0) 
   h0=h0s; 
 
QUESTION: h0s is a static double type argument; is its value retained when the 
subroutine is not online?  Does it come from the calling routine lrprop?  Need to 
determine the source of this value.  Unless d=0, there is no value preset for h0s.   

 
5. A second else statement at line 302, nested within the first else statement, 

provides an alternate path to the if statement nested within the first else 
statement. This else statement affects lines 304 to 338. So if d is not equal to 
zero, and if h0s is less than or equal to 15, then:  

  
a. th,(a..k.a.theta, or in TN101 θοο, or in the Algorithm, θ’, theta prime), 

the angular distance,  is set to be equal to:  
 

prop.the[0]+prop.the[1]+d*prop.gme; [Alg.4.61] or [TN101 6.14] 
 

where 
 prop.the[0] is the launch angle from the transmit antenna 

prop.the[1] is the launch angle from the receive antenna 
d  is the total path distance 
prop.gme is the effective earth’s curvature, which is equal to 1/a, 
where a is the effective earth’s radius 

  



b. r2 is set to be equal to 2 * prop.wn * th;  this is a part of [Alg 4.62), in 
that r2 is momentarily set to be equal to the term 2 * k * θ’,  
where:  

prop.wn, is the wave number, k, equal to the frequency in 
MHz divided by 47.7, as defined in [Alg. 1.1] ;    
th is θ’, or theta prime, the angular distance calculated in 
step a. above, as per [Alg.4.61].  

 
c. r1 is set to be equal to r2 * prop.he[0];  calculated as per [Alg. 4.62]. 
 

where 
      r2 was determined in step b. above 

prop.he[0] is the effective height of the transmit site antenna (in 
meters) 

  
d. r2 is then reset to be equal to the value of r2 from step b. above, 

multiplied by the value of prop.he[1], the effective height of the 
receive antenna.  At this point, r1 and r2 have been calculated as per 
[Alg. 4.61].  

   
This comes from the equations for the Frequency Gain Function, Ho, in Section 9.2 of 
TN101.  On page 9–3 of TN101, the parameters r1 and r2 are defined as:  
 

r1 = 4 * π  ∗ θ  * hte,/λ     and r2  =  4 * π  ∗ θ  * hre,/λ    [TN101 9.4b] 
 

In TN101, Section 9.2, the dimensions can be said to be either meters or kilometers for 
the wavelength λ, and for the effective antenna heights, hte, and hre, as long as all are 
specified in either meters or kilometers; these units of measure cancel out.    The angular 
distance θ is specified in radians in TN101 and in the Algorithm.  This is not true in the 
code.  Radians, in mathematics, are usually assumed to be the standard unit of angular 
measure, so the unit “rad” is customarily omitted, contributing to the confusion in 
attempting to study Longley Rice as it translates from TN101 to the computer code.  In 
the ITM FORTRAN and c++ code, the angular distance θ  is specified in a unique ratio; 
the ratio of vertical distance change to horizontal distance change.  The units must cancel 
out (both the numerator and denominator must be specified in the same units).  The 
change in units for θ is not the only difference in r1 and r2.  In the equation for r used in 
the code, the wave number is used instead of the wavelength.  
 
The Algorithm, defines the wave number to be that of the carrier or central frequency.  It 
is defined to be:  
 
 k =  (2 * π /λ )  =  f /  fo     with  fo  =  47.70 MHz * meters.  [Alg. 1.1]   
 
Resorting r1 and r2 , we get: 
 

r1 = 2 ∗ θ  * hte* (2 * π /λ )    and r2  =  2 * θ  * hre * (2 * π /λ) [TN101 9.4b] 



 
Replacing the term  (2 * π /λ ) with k:  
 

r1 = 2 ∗ θ  * hte*  k     and r2  =  2 * θ  * hre * k , which is the same as [Alg. 4.62]  
 
The distance units, if all in meters, cancel out.  So we have now successfully converted 
from wavelength to wave number.  But in the equation [Alg. 4.62], in Section 4.3.1, “The 
Function Ascat.” the angular distance θ is still being specified in radians, as becomes clear 
in Section 6, equations [Alg 6.13 and 6.14}.   
 
How do we convert θ, a.k.a. th, to radians?   There are 2π radians in a full cycle, or 360o.  
A radian is defined as the angle subtended at the center of a circle by an arc of 
circumference that is equal in length to the radius of the circle.  Draw this construct on a 
circle, with one radii of length r on the horizontal plane, and a distance of r on the 
circumference between the two radii.  Now draw a vertical line from the point where the 
non-horizontal radii touches the circumference of the circle, to a point perpendicular to 
the horizontal radii, forming a right triangle. The radius then becomes the hypotenuse of a 
right triangle with an angle, subtended at the center of the circle, between the two radii, 
of one radian, or 57.2958 degrees.  The length of the vertical line is then equal to the sine 
function of the angle θ, which is equal to the ratio of the length of the vertical line to the 
length of the hypotenuse of the triangle, which is equal to r.  So we can now obtain the 
length of the vertical line by multiplying sin θ by the hypotenuse length, r. This results in 
the equation: 
    V = (sin θ) * r   
 
The length of the horizontal line is then equal to the cosine function of the angle θ, which 
is equal to the ratio of the length horizontal line of the triangle to the length of the 
hypotenuse of the triangle, which is equal to r.  So we can obtain the length of the 
horizontal line by multiplying cos θ by the hypotenuse length, r. This results in the 
equation: 
    H = (cos θ) * r   
 
We can now obtain the ratio of the vertical length to the horizontal length by dividing the 
equation for Y by the equation for X. and canceling out the “r” terms:  
 
   V/H = [(sin  θ) * r] / [ (cos θ) * r ]  =  (sin θ)/(cos θ)  
 
In trigonometry, by definition of the tangent function, tan x =  (sin x) / (cos x), so the 
equation becomes:  
 
   V/H =  (tan θ) in radians 
 
This can be used to convert from the angle in radians or degrees, to the ratio used for θ 
in the code, but we also need to know how to convert from the vertical-distance-to- 
horizontal-distance ratio (V/H ratio) used for th, to radians, in case we later run into a 
formula that cannot handle the V/H ratio.  For this we use the arctan subroutine function:   



 
   arctan (V/H) = θ in radians (rads) 
 
We will need these conversion factors later in the subroutine, and in subroutine h0f when 
we call it. 
 
Line 298:  else 
  { 

 th=prop.the[0]+prop.the[1]+d*prop.gme; 
   r2=2.0*prop.wn*th; 
   r1=r2*prop.he[0]; 
   r2*=prop.he[1]; 
 

6. An if statement is nested in the else statement at this point. If r1 is less than 
0.2 and if r2 is less than 0.2, then the function Ascat is not defined, (or is 
infinite), and the subroutine returns 1001.0 as the value of ascatv. The 
subroutine ends early, and returns to the calling subroutine, lrprop. 

 
Line 309:   if (r1<0.2 && r2<0.2) 
  return 1001.0;  // <==== early return 
 

7. If r1 is equal to or more than 0.2, or if r2 is equal to or more than 0.2, the 
program continues under the else statement, and: 

 
a. ss, a.k.a. ss the “asymmetry factor” over smooth earth, is set to be 

equal to: 
=(d-ad)/(d+ad); 
 

       where:  
   d is the total path distance 

ad is the absolute value of the difference between the distances 
to the horizon from the transmit site and the receive site, 
measured in meters. 

 
Which at first glance, appears to bear no relationship to the equations described in the 
Algorithm. However, In the Algorithm, the asymmetry factor is found by first defining 
the distance between horizons 
 
   ds = s − dL1 − dL2   [Alg. 4.64] also [TN101 6.17]   
 
From TN101, page 6-6, it states: 
 
 “The sum of dst and dsr, the distances from each horizon obstacle to the crossover 
of horizon rays, is the distance Ds (this Ds is the same as ds in the Algorithm and c++ 
code).  Over a smooth earth dst  = dsr  = Ds / 2.   
 



The Algorithm states: “A difficulty with the present model is that there is not sufficient 
geometric data in the input variables to determine where the crossover point is.   This is 
resolved by assuming it to be midway between the two horizons.”   Therefore,  from this 
assumption, ds /2 is equal to the distance from each horizon to the crossover point. 
 
whereupon 
   ss  =  (dL2 + ds /2) / (dL1 + ds /2)   [Alg. 4.65]   
 where:   
  dL2 is the distance from the receive site to the horizon 
  dL1  is the distance from the transmit site to the horizon 

ds is the distance between  the transmit horizon and the receive 
horizon 

 
And,    ds   =  d −  dL2 −  dL1,  the same as:  [Alg. 4.64] also [TN101 6.17]   
 
Or, restated; d, the total path distance, equals the sum of  dL2 + dL1 + ds  
 
Therefore, dL2 = −  dL1 −  ds + d, and dL1 = −  dL2 −  ds + d, 
 
So, substituting into [Alg. 4.65] we get: 
 

  ss  =  (− dL1 −  ds + d + ds /2) / (−  dL2 −  ds + d + ds /2)      
 
by reordering:   ss  =  (d − dL1 −  ds + ds /2) / ( d −  dL2 −  ds + ds /2) 
by consolidating: ss  =  (d − dL1 −  ds /2) / ( d −  dL2 −  ds /2) 
by multiplying both the numerator and denominator by 2: 

ss  =  (2d − 2dL1 −  ds) / ( 2d − 2 dL2 −  ds) 
and substituting  d −  dL2 −  dL1  for  ds 

ss  =  (2d − 2dL1 −  d + dL2 + dL1) / ( 2d − 2 dL2 −  d + dL2 + dL1)
by consolidating: ss  =  (d − dL1  + dL2 ) / ( d −  dL2  + dL1)
by reordering:   ss  =  [d − (dL1 − dL2 )]/ [d + ( dL1 − dL2  )] 
 
Since ad has been made equal to the absolute value of  prop.dl[0]−prop.dl[1], where 
prop.dl[0] =  dL1 , and   prop.dl[1] = dL2 , then the value of ad is equal to the term 
(dL1 − dL2), and equations [ Alg. 4.64 and 4.65] merge to create: 

 
ss  =  [d − (ad)]/ [d + (ad )] 

 
Therefore the value of ss, which represents ss the “asymmetry factor” over smooth earth, 
is set to be equal to: (d-ad)/(d+ad). 
 
An interesting point here is that ad at this point has been set to be the absolute value of ad 
in step 2 above.  This refers to the procedure mentioned in the last paragraph on page 6-7 
of TN101, where it states:   
 



 “Many of the graphs in this a subsequent sections assume that s is < 1 (Ed. here 
TN101 is referring to “s” as the “asymmetry factor). It is therefore convenient, since the 
transmission loss is independent of the actual direction of transmission, to denote as the 
transmitting antenna whichever antenna will make s less than or equal to unity.” 
 
By using the absolute, or always positive, value of ad, we make sure that ss will be less 
than 1, as the numerator will always be smaller than the denominator. 
 
Line 312:   ss=(d-ad)/(d+ad); 
 
  

b. in the next step, q is set to be equal to the ratio of rr/ss, where: 
The argument rr represents the dimensionless, and absolute, (i.e. 
always positive), ratio of the higher terminal’s effective height above 
ground level, (transmit or receive site antenna) to the lower terminal’s 
effective height above ground level.  
ss is the asymmetry factor over smooth earth.  

 
Line 313:  q=rr/ss; 
  

c.  the value of ss ( a..k.a. ss ), the asymmetry factor, is then set to be no 
less than 0.1; 

 
Line 314:  ss=mymax(0.1,ss); 
 
In section 9.2 of TN101, “The Frequency Gain Function, Ho “ it states:  
 
 “For the great majority of transhorizon paths, s is within the range 0.7 < s < 1. 
The effect of very small values of s, with αo << βo, may be seen in figures III.15 to III.19, 
which have been computed for the special case where effective transmitting and receiving 
antenna heights are equal.” 
 
The effect shown in these charts is that s (or for smooth earth, ss or ss),  has a minor 
effect for  0.7 < s < 1.  There is a greater effect as s becomes lower in value, i.e. as the 
asymmetry increases.  The above action limits the maximum effect to be that obtained at 
an asymmetry ratio of 10 to 1, i.e. s = 0.1. 
 

d. The value of q represents the ratio of the dimensionless, and absolute, 
(i.e. always positive), ratio of the higher terminal’s effective height 
above ground level, (transmit or receive site antenna) to the lower 
terminal’s effective height above ground level, divided by ss, the 
asymmetry factor over smooth earth (whose range has not yet been 
limited, and has been set to always be a positive value).  Here, the 
range of q is limited, so that the value of q can be no less than 0.1, and 
no more than 10.0.   

 



Line 315:   q=mymin(mymax(0.1,q),10.0); 
 

e. z0, the height of the crossover point, is calculated.  The Algorithm 
states:   

“There then follows that the height of the crossover point is: 
 

z0 =( ss * d * θ’)/(1 + ss)2          [Alg. 4.66]” 
where 
    ss is the asymmetry factor for smooth earth, = ss 

d is the total path distance, in kilometers 
θ’ is theta prime, the angular distance; = th 

 
A form of this equation is also found in [TN101 9.3b], where units are in kilometers. 
 
However, this leaves out a lot of explanation.  From TN101 Section 9.2, where z0 is 
referred to as ho, it is defined as the height of the crossover point as referenced to a direct 
line drawn between the transmit antenna and the receive antenna, not with reference to 
sea level or ground level.  A visual depiction of ho is shown in Figure 6.1 on page 6 – 8.  
In TN101, it is utilized in calculating Ho, the “frequency gain function”. 
   
Here, the code calculates z0 to be equal to: (d-ad)*(d+ad)*th*0.25/d. How did the 
Irregular Terrain Model code writers get to this equation for z0, starting from [TN 101 
9.3b] and [Alg. 4.66]?    
 
First, we re-order Alg. 4.66;  
 z0 =(ss* d * θ’)/(1 + ss)2 =  (θ’ * d* ss) *1/(1 + ss)2 [TN 101 9.3b] and [Alg. 4.66] 
 
Then multiply both sides by (1 + ss ): 

 
z0 * (1 + ss ) = θ’ * d* ss *[1/(1 + ss)] 
 

and then substitute the equation for ss, a.k.a. ss the “asymmetry factor” over smooth earth, 
ss = (d-ad)/(d+ad), derived and used in Step 7 (a.) above, for the three ss terms: 

 
z0 * (1 + (d-ad)/(d+ad)) = θ’ * d* (d-ad)/(d+ad)*[1/(1 + (d-ad)/(d+ad))] 

 
multiplying out the terms in the left hand side of the equation, and reordering the terms in 
the right hand side of the equation: 

 
(z0 + z0 * (d-ad)/(d+ad)) = θ’ * d*[(d-ad)/(d+ad)]*[1/(1 + (d-ad)/(d+ad))] 

 
recombining the numerator in the right hand side of the equation: 

  
(z0 + z0 * (d-ad)/(d+ad)) = θ’ * d* (d-ad)/[(d+ad)*(1 + (d-ad)/(d+ad))] 
 

multiplying out the terms in the numerator in the right hand side of the equation: 



 
(z0 + z0 * (d-ad)/(d+ad)) = θ’ * d* (d-ad)/[(d+ad) + (d-ad)*(d+ad)/(d+ad))] 
 

the term (d+ad)/(d+ad) in the right hand side denominator equals 1 (cancels out), and by 
adding up the terms in the right hand side denominator, we get: 
 

(z0 + z0 * (d-ad)/(d+ad)) = θ’* d* (d-ad)/(d + d + ad − ad) = θ’* (d-ad)* d /2d 
 

since d/d = 1, the d /2d term in the right hand side denominator equals ½, so: 
 

(z0 + z0 * (d-ad)/(d+ad)) = θ’* (d-ad)* (1/2) 
 

by multiplying both sides of the equation by the term (d+ad), we get:  
 
z0* (d+ad) + z0 * (d-ad) * [(d+ad)/(d+ad)]  =  θ’* (d-ad)* (d+ad) /2 
 

the term (d+ad) /(d+ad) equals 1; also, by multiplying out the terms on the left side of the 
equation, and adding up, we get: 

 
z0* (d)+ z0*(ad) + z0 * (d) − z0*(ad) =  2 * d * z0 = θ’* (d-ad)* (d+ad) /2 
 

by dividing both sides of the equation by 2 * d,  we get: 
 
z0 (2d/2d) = θ’* (d-ad)* (d+ad) /(2 * 2 * d) = θ’* (d-ad)* (d+ad) /(4 * d) 

 
the term (2d/2d) = 1, and ¼  =  0.25, so the result is:   
 

z0 = th* (d-ad)* (d+ad) *(0.25)/d, the equation used in the ITM code. 
 
where: 

th represents the angular distance, θ’, (theta prime). 
 
Line 316:   z0=(d-ad)*(d+ad)*th*0.25/d; 
  

f.  the working variable temp is set to be equal to z0 divided by 8,000 
unless the results equal or exceed 1.7; in which case the value of temp 
is limited to 1.7 (limiting the value of temp where z0 exceeds a ceiling 
of 13,600 feet).   

 
Line 319:  temp=mymin(1.7,z0/8.0e3); 
 

g. the value of temp is then set to the value of temp set in step 7 (f.), 
multiplied to the sixth power, i.e. temp = (temp)6.  Now, temp 
represents (z0/Z1)6, a component of the equation for ηs,  where Z1 =  
8,000, except that temp is limited to a maximum value of (1.7)6 = 
24.138.  



 
Line 320:   temp=temp*temp*temp*temp*temp*temp; 
 

h. the value of temp is then used to calculate the value of et to be equal 
to:   (etq*exp(-temp)+1.0)*z0/1.7556e3); 

 
 where: 

At line 293, in step 3(a.), if d = 0, etq was calculated to be equal to 
[(5.67e−6∗prop.ens−2.32e−3)*prop.ens+0.031].  

 
The full equation we are working toward is:  

 
ηs  = ( z0 / Z0 ) * [1+ (0.0.031 −Ns*2.32 *10−3 +Ns

2
  *5.67*10−6)e−( z0 / Z1)^6 ]  

     [Alg. 4.67] 
where 

ηs is the scatter efficiency factor 
Z0  = 1.756 km or 1756 meters  

and now where:  
temp represents the value of (z0/Z1)6, limited to a maximum value 
of 24.138.  

   etq is equal to the term: (0.0.031 −Ns*2.32*10−3 +Ns
2 *5.67*10−6).  

 
This shortens the equation for ηs to be:  ηs  = (z0 / Z0)*[ 1 + (etq )e− ( temp) ]. 

 
Replacing Z0  with 1756 meters and reordering, allows us to clearly see 
that et has been set to be the calculated value of ηs, the scatter efficiency 
factor: 

ηs  = [(etq )e(−  temp) + 1]*(z0 /1.756e3) 
 
  Where temp has been limited to a maximum value of 24.138. 
 
Line 321:  et=(etq*exp(−temp)+1.0)*z0/1.7556e3) 
 

i. The subroutine mymax is called to set ett to be equal to et unless et is 
equal to 1 or less; then the value is set to be equal to a minimum value 
of 1.0.  

 
Line 323:  ett=mymax(et,1.0); 
    
 
From the Algorithm:  
 
“The computation of H0 then proceeds according to the rules in Section 9.3 and Figure 
9.3 of Tech Note 101.   
 



The model requires these results at the two distances s = d5, d6 described above.  One 
further precaution is taken to prevent anomalous results.  If, at d5, calculations show that 
H0 will exceed 15 dB, they are replaced by the value it has at d6. This helps keep the 
scatter mode slope within reasonable bounds.”  
  

j.  here, the subroutine h0f is called twice;  the first time with inputs 
(r1,ett), and the second time with inputs (r2,ett),  

where:  
r1 here is defined as twice the angular distance th, times the 
effective height of the transmitter site in meters, times the wave 
number in units of 1/meters.    
r2 here is defined as twice the angular distance th, times the 
effective height of the receive antenna in meters, times the wave 
number in units of 1/meters.  
ett is the value of ηs, the scatter efficiency factor, limited to a 
maximum value of 1.0. 

 
The subroutine h0f performs a function equal to that stated in TN101 in 
Section 9.2, on page 9-4, where it states: 

“For ηs greater than or equal to 1; Read Ho(r1) and Ho(r2) from 
figure 9.3; then Ho is 

    Ho = [Ho(r1) + Ho(r2)]/2 +  ∆Ho    [TN101 9.5] 
   where 
    ∆Ho = 6 * (0.6 − log ηs) log s log q 
    
    s = αo / βo    q = r2 /(s * r1) “  
 

If ηs > 5, the value of Ho for ηs  = 5 is used.  The correction term ∆Ho is 
zero for ηs = 4, s = 1, or q = 1 and reaches a maximum value, ∆Ho = 3.6 
db, for highly asymmetrical paths when ηs= 1.  The value of ∆Ho may be 
computed as shown.” 

 
Since we cannot use the table, the approximation used here, and in subroutine h0f, is 
described in the Algorithm, section 6, starting with equation [Alg. 6.10], and continuing 
through [Alg. 6.14], where it states:    
 
 “The frequency gain function may be written as  
 
  Ho = [Hoo(r1, r2, ηs)]  + ∆Ho         [Alg. 6.10] 
where 

∆Ho = 6 * (0.6 − log ηs) log ss * log r2 /( ss * r1)   [Alg. 6.11] 
 

and where Hoo is obtained by linear interpolation between its values when ηs is an 
integer.    
 
For ηs = 1,…,5  we set 



 
Hoo(r1, r2,  j)] =  ½ [H01(r1,  j) + H01(r2,  j)]   [Alg. 6.12]   
 
With H01(r1,  j) equal to: 
  
 10 log (1 + 24r -2 + 25r -4)      j = 1   [Alg. 6.13] 
 10 log (1 + 45r -2 + 80r -4)      j = 2   

10 log (1 + 68r -2 + 177r -4)    j = 3   
 10 log (1 + 80r -2 + 395r -4)    j = 4 
 10 log (1 + 105r -2 + 705r -4)  j = 5 
 
For ηs >5  we use the value for ηs = 5, and for ηs = 0 we suppose 

 
Hoo(r1, r2, 0) = 10*log[(1+(2)1/2/ r1)2 *(1+(2)1/2/ r2)2 *( r1+r2)/(r1+r2+2*(2)1/2

  [Alg. 6.14] 
 
In all of this, we truncate the values of ss and q = r2 /(ss*r1) at 0.1 and 10.” 
 
The equation given for ∆Ho, in the Algorithm, 
 
∆Ho = 6 * (0.6 − log ηs) log ss * log r2 /( ss * r1)   [Alg. 6.11] 
 
is the same as the equation for  found in TN101: 
 
  ∆Ho = 6 * (0.6 − log ηs) log s log q  [TN101 9.5]  

    
     where q = r2 /(s * r1) “  
 

The two calls return the value hofv, i.e. the values for Ho(r1) and Ho(r2);  
h0 is then set to be equal to the average value (½ the sum) of the results of 
the two calls to h0f: 

 
 Line 324:  h0=(h0f(r1,ett)+h0f(r2,ett))*0.5; 
    

k. the value of  ∆Ho is then calculated and added to the value of h0 
using an equation for ∆Ho calibrated for meters, instead of the 
kilometers used in TN101; the call to subroutine mymin makes sure 
that the value of ∆Ho is no greater than the value of h0 obtained at line 
324, limiting the maximum value of h0 to be equal to the sum of the 
two returns from the two calls to h0f.  This is in accord with TN101, 
section 9.2, page 9-4, where it states: “If ∆Ho > [Ho(r1) + Ho(r2)]/2, 
use  Ho = [Ho(r1) + Ho(r2)].”  
  

Line 325:  h0+=mymin(h0,(1.38-log(ett))*log(ss)*log(q)*0.49); 
 

l. The subroutine FORTRAN_DIM is called with inputs (h0, 0.0); the 
subroutine returns the value of (h0 – 0.0), or h0, if h0 is greater than 



0.0; if 0.0 is greater than h0, the subroutine returns zero.  Here, this 
archaic subroutine could be replaced with mymax. 

 
This is in accord with TN101, section 9.2, page 9-4, where it states: “If 
∆Ho would make Ho negative, use Ho = 0.” 

 
Line 326:  h0=FORTRAN_DIM(h0,0.0); 
 

8. A second if statement is nested in the else statement at this point. If et, which 
holds the value of ηs, the scatter efficiency factor, is less than 1, then:  

 
Line 328: if (et<1.0) 
   { 
 

a. Here we reuse the working variable temp. The value of temp is reset to 
be equal to:  

 
((1.0+1.4142/r1)*(1.0+1.4142/r2)); 

 
Line 332: temp=((1.0+1.4142/r1)*(1.0+1.4142/r2)); 
 

b. The value of h0 is set to be equal to: 
 
h0 = et*h0+(1.0-et)*4.343*log((temp*temp)*(r1+r2)/(r1+r2+2.8284)). 

 
Step 8(b.), incorporates an interpolation statement, referring to the statement in 
the Algorithm that: “Hoo is obtained by linear interpolation between its values 
when ηs is an integer.”  If et, a.k.a. ηs < 1, then Hoo for (ηs = 1) has been 
calculated at line 324 and the value of ∆Ho for (ηs = 1) is added at line 325, to 
m e h0 equal to the value of Hak o for (ηs = 1).        
At line 326, h0 is set to be the maximum of h0 as calculated on line 325, or zero. 
So the term (et*h0) is the value of h0 (for ηs = 1) multiplied by ηs, representing 
the portion of h0 for (0 < ηs < 1) interpolated from the value of h0 for ηs = 1. The 
term (1- et)*4.343*log((temp*temp)*(r1+r2)/(r1+r2+2.8284)) is the value of h0 
(for ηs = 0) multiplied by ( 1-ηs), representing the portion of h0 for (0 < ηs < 1) 
interpolated from the value of h0 for ηs = 0. 
 
The term  (4.343*log((temp*temp)*(r1+r2)/(r1+r2+2.8284)) represents the value 
of h0 for ηs = 0, where Ho(ηs = 0) = Hoo(r1, r2, 0) + ∆Ho(ηs = 0). TN101, section 9.2, 
states: “The case ηs = 0 corresponds to the assumption of a constant atmospheric 
refractive index.”  The Algorithm, section 6, states:  
 
“for ηs = 0 we suppose 

 
        Hoo(r1, r2, 0) = 10*log[(1+(2)1/2/ r1)2 *(1+(2)1/2/ r2)2 *( r1+r2)/(r1+r2+2*(2)1/2)  

    [Alg. 6.14]” 



 
Since  (2)1/2 = 1.4142,  the value of temp set in step 8 (a.) is equal to the term  
(1+(2)1/2/ r1)2 *(1+(2)1/2/ r2)2 in [Alg 6.14], simplifying Hoo(r1, r2, 0) to be:    
 

Hoo(r1, r2, 0) = 10*log[(temp)*( temp)*( r1+r2)/(r1+r2+2.8284)] 
 
Which we can easily recognize as being a part of the equation for h0 in step 8 (b.) 
above.  In step 8(a.), by removing the interpolation terms, we can derive that h0 
for ηs = 0, as used in the code, is:  

 
h0 for (ηs = 0)= 4.343*log((temp*temp)*(r1+r2)/(r1+r2+2.8284)). 

 
Since   h0 is equal to: Ho = [Hoo(r1, r2, ηs)]  + ∆Ho       [Alg. 6.10]  
 
For ηs = 0, [Hoo(r1, r2, 0)] is equal to: 
 
        Hoo(r1, r2, 0)=10*log[(1+(2)1/2/ r1)2 *(1+(2)1/2/ r2)2 *( r1+r2)/(r1+r2+2*(2)1/2)]  

    [Alg. 6.14]” 
 
replacing the term [1+(2)1/2/ r1)2 *(1+(2)1/2/ r2)2 ] in [Alg. 6.14] with (temp*temp), 
we get: 
 
        Hoo(r1, r2, 0)=10*log[(temp*temp)*( r1+r2)/(r1+r2+2.8284)].  
 
This is calculated as per [Alg 6.14], except that the constant multiplier value 
4.343 replaces the constant multiplier value 10, as it did for the equations based 
on [Alg. 6.13] used in the subroutine h0f, previously called by ascat.  Why? I 
thought the answer was the unusual units of measure of th, used in calculating r1 
and r2 , and I still hold that opinion.  But a single change of a constant value, from 
10 to 4.343, will not do the job of compensating for the different units properly; 
as the equations use values of  (r1)2, (r2)2 , (r1)4 and (r2)4 multiplied by varying 
constants. 

 
MAJOR PROBLEM NOTE:  Therefore, since r1 and r2   were calculated with a value 
of th in the wrong units, it appears to this author that the subroutine will produce 
errant and erratic results; the replacement of the constant value 10 by 4.343 may have 
occurred in order to produce results that were somewhat close to the empirical results 
from the field measurements.  The author finds no other solid mathematical basis for 
the change from 10 to 4.343 in the equations in the code. 

   
How can this be corrected?  By using the equation:   
 

 arctan (V/H) = θ in radians (rads) 
 
To convert the unit value of th to radians prior to its use in calculating r1 and 
r2,, at  line 305 of this subroutine; and replacing the constant 4.343 with the 



correct constant, 10, stated in [Alg. 6.13 and 6.14], in subroutines hof and 
ascat. 
 
Using a different approach, we try reverse engineering.  Solving [Alg. 6.10] for 
∆Ho, we derive that: 
 

∆Ho = Ho −  [Hoo(r1, r2, ηs)]    
 
therefore ∆Ho( ηs = 0) =  Ho( ηs = 0)  − [Hoo(r1, r2, 0)], and; 

 
∆Ho( ηs = 0) = [4.343*log((temp*temp)*(r1+r2)/(r1+r2+2.8284))] −  
10*log[(temp*temp)*( r1+r2)/(r1+r2+2.8284)] 

 
which shortens to become: 
 

∆Ho( ηs = 0) = (4.343 −10)*[log((temp*temp)*(r1+r2)/(r1+r2+2.8284))]  
 

and adds up to: 
 

∆Ho( ηs = 0) = (− 5.657)*[log((temp*temp)*(r1+r2)/(r1+r2+2.8284))]  
 
 
 and in the code, ∆Ho is added to Hoo(r1, r2, 0) by:  

 
h0+=mymin(h0,(1.38-log(ett))*log(ss)*log(q)*0.49); 

 
Since we cannot use the table, the approximation used here, and in subroutine h0f, is 
described in the Algorithm, section 6, starting with equation [Alg. 6.10], and continuing 
through [Alg. 6.14], where it states:    
 
 “The frequency gain function may be written as  
 
  Ho = [Hoo(r1, r2, ηs)]  + ∆Ho         [Alg. 6.10] 
where 

∆Ho = 6 * (0.6 − log ηs) log ss * log r2 /( ss * r1)   [Alg. 6.11] 
 
and where Hoo 

is obtained by linear interpolation between its values when ηs is an integer. 
For ηs = 1,…,5  we set 
 
Hoo(r1, r2,  j)] =  ½ [H01(r1,  j) + H01(r2,  j)]   [Alg. 6.12]   
 
With H01(r1,  j) equal to: 
  
 10 log (1 + 24r -2 + 25r -4)      j = 1   [Alg. 6.13] 
 10 log (1 + 45r -2 + 80r -4)      j = 2   



10 log (1 + 68r -2 + 177r -4)    j = 3   
 10 log (1 + 80r -2 + 395r -4)    j = 4 
 10 log (1 + 105r -2 + 705r -4)  j = 5 
 
For ηs >5  we use the value for ηs = 5, and for ηs = 0 we suppose 

 
Hoo(r1, r2, 0) = 10*log[(1+(2)1/2/ r1)2 *(1+(2)1/2/ r2)2 *( r1+r2)/(r1+r2+2*(2)1/2

  [Alg. 6.14] 
 
In all of this, we truncate the values of ss and q = r2 /(ss*r1) at 0.1 and 10.” 
 
The equation given for ∆Ho, in the Algorithm, 
 
∆Ho = 6 * (0.6 − log ηs) log ss * log r2 /( ss * r1)   [Alg. 6.11] 
 
is the same as the equation for  found in TN101: 
 
  ∆Ho = 6 * (0.6 − log ηs) log s log q  [TN101 9.5]  

    
     where q = r2 /(s * r1) “  

 
This is used in lieu of the procedure from TN101 section 9.2(b), where it states: 

  “For ηs less than 1: 
First, obtain Ho for ηs = 1, as described above, then read Ho for ηs = 0 

from figure 9.5.  Figure 9.5b shows Ho (ηs  = 0) for the special case of 
equal antenna heights.  The desired value is found by interpolation: 

  Ho(ηs <1) = Ho(ηs =0) + ηs [Ho(ηs =1) − (Ho(ηs =0)].” 
Since the program cannot read the value from figure 9.5;  

 
Ho = [Ho(r1) + Ho(r2)]/2 +  ∆Ho    [TN101 9.5] 

 
  Where: 
 
Line 333:   h0=et*h0+(1.0-et)*4.343*log((temp*temp)*(r1+r2)/(r1+r2+2.8284)); 
      } 

 
The above steps 8 (a.) and (b.) are used to approximate the results obtained from 
the procedure found in TN101 section 9.2(b). 
 
This is calculated as per [Alg 6.13], except that the constant multiplier value 
4.343 replaces the constant multiplier value 10, a fudge factor adjustment found in 
eleven locations in the code, and discussed in the Chapter on Aknfe.  A single 
change of a constant value, from 10 to 4.343, will not do the job properly; as the 
formula uses values of  (r1)2, (r2)2 , (r1)4 and (r2)4 multiplied by varying constants. 

 
MAJOR PROBLEM NOTE:  Therefore, since r1 and r2   were calculated with a value of 
th in the wrong units, it appears to this author that the subroutine will produce errant 



and erratic results; the replacement of the constant value 10 by 4.343 appears to be a 
“fudge factor” added in order to produce results that were somewhat close to the 
empirical results from the field measurements.  The author finds no other solid 
mathematical basis for the change from 10 to 4.343 in the equations in the code. 
 

9.   A third if statement is nested in the else statement at this point. If both:  h0 is 
greater than 15.0, and h0s is greater than or equal to 0.0, then h0 is set to be 
equal to h0s;  

 
Line 336:  if (h0>15.0 && h0s>=0.0) 
   h0 = h0s; 
 

10.  The second else statement then ends, but the first else statement is still active, 
and continues;   

 
a. h0s is set to be equal to h0.  Here h0s, the Ho value for smooth earth, is 

preset to be equal to the value of h0, unless h0 was >15 and h0s > 0, 
where both would have been set to the value for h0s.  

b. th is set to be equal to: propa.tha + d * prop.gme;  
 
where:  
 propa.tha  is the total bending angle, set in lrprop;  
 d  is the path distance   

prop.gme;  is the effective earth’s curvature. 
 
NOTE: HERE, th IS RECALCULATED USING propa.tha, which may be derived from 
prop.the[0] and prop.the[1] in step 3(c.) of lrprop.. 
 

c. ascatv is set to be equal to: 
 ahd(th*d)+4.343*log(47.7*prop.wn*(th*th*th*th))  

   − 0.1*(prop.ens-301.0)*exp(-th*d/40e3)+h0; 
 

The subroutine ahd is called with input equal to: (th*d).  The subroutine 
ahd returns the value of F0 (D), a.k.a. F (θ 

d,  Ns = 301), used below in the 
equation for F (θ 

d,  Ns ).    
 

From Section 4.3.1 , “The function Ascat,”  
 
 “Ascat (s) = 10 log(k *  H * θ 4) +  F (θ 

s,  Ns )  +  Ho   [Alg. 4.63] 
 
  where  
   F (θ 

s,  Ns )  is the function shown in Figure 9.1 of TN101 
   Ho is the “frequency gain function” 
   H is 47.7 meters.” 
  also: 
   k,  the wave number, is the value stored in prop.wn; 



   th is the angular distance, recalculated in step 10(b.) above;  
 

Figure 9.1 of  TN101 is a table; so its function is approximated by the equation 
listed after III.48 in Annex III, Section 5 – Forward Scatter, where it states: 

 
The function F (θd) may be obtained for any value of Ns, by modifying the value 
computed for Ns = 301: 

   
  F (θ 

d,  Ns )  =  F (θ 
d,  Ns = 301 ) − 0.1*( Ns -301.0)*exp(-θ *d/40) 

  
Which, with the constant 40 converted to 40,000 to adjust for a change from 
kilometers to meters as the unit value of d, is the same as: 

 
F (θ 

s,  Ns )  =  − 0.1*(prop.ens-301.0)*exp(-th*d/40e3) 
    
  where 
   prop.ens  is the earth’s surface refractivity, a.k.a. Ns

   th is the angular distance,θ, recalculated in step 10(b.) above;  
   d  is the path distance 
 
NOTE:  4.343 is being substituted for 10 again, as discussed above. 
 

d. The first else statement then ends its run. 
  
Line 340: h0s=h0; 
Line 341:  th=propa.tha+d*prop.gme; 
Line 343: ascatv=ahd(th*d)+4.343*log(47.7*prop.wn*(th*th*th*th))-0.1*(prop.ens-

301.0)*exp(-th*d/40e3)+h0; 
      } 
 

11.   The subroutine then ends by returning the value of ascatv, the “scatter 
attenuation” at a distance d.  

 
Line 346: return ascatv; 
 
 
 
 
 
 
 
 
 
 
 



Chapter 18: Ahd 
 
Approximate tHeta D function for scatter fields; subroutine: ahd. 
 
Note: Used with both point-to-point mode and area mode.  Called by ascat.  
 
From ITMD Section 26: 
 
This is the F(θ d) function for scatter fields. 
 
As defined in the Algorithm, Section 6,  “Addenda – numerical approximations.”  This 
section starts by mentioning:  

 
“Part of the algorithm for the ITM consists in approximations for the standard 
functions that have been used.  In these approximations, computational simplicity 
has often taken greater priority than accuracy.”   

 
The Algorithm later states: 
 

“we have the two functions, F(θ d) and H0 , used for tropospheric scatter.  First,   
 
  F(D, Ns ) =  F0 (D)  − 0.1 (Ns  −  301 )e−D/Do 

    (6.8) 
 
 where 
   
  D0  = 40 km  
 

And (when D0 is given in meters) 
 
  F0 (D) =  133.4 + 0.332 * 10−3 * D  − 10 * log D   for 0 < D < 10 km, or 

   
  F0 (D) =  104.6 + 0.212 * 10−3 * D − 2.5 * log D   for 10 < D < 70 km, or 
 
  F0 (D) =  71.8 + 0.157 * 10−3 * D  + 5 * log D     otherwise “  (6.9) 
 
This can also be found in Annex III, Section III.5 “Forward Scatter”, of Tech Note 101; 
from equations [TN101 III.46, 47, and 48] on page III-24. 
 
Call inputs for subroutine ahd: 
 
 Td D ,   distance in meters 
 
 
Declares private, or local, arguments:  
i; 



 a[3]={      133.4,       104.6,           71.8}; 
 b[3]={ 0.332e−3,  0.212e−3, 0.157e−3}; 
 
NOTE: The constants for c below do not match the constants in Alg. 6.9.  They have 
been modified by the multiplication of the original constants by .4343; a part of the 
“fudge factor” applied in 11 locations. 
 
 c[3]= {     −4.343,   − 1.086,       2.171 }; 
 
These constants should be: 
 
  { -10,  - 2.5, and  +5 }, as per [Alg. 6.9] 
 
In this subroutine: 
 

204. Initiates an if statement.  If td is less than or equal to 10,000 meters, then 
the value of i is set to be equal to zero. 
 

Line 207:    if (td<=10e3) 
   i=0; 

 
205. An else if statement follows; if td, at line 207, was more than 10,000 

meters, and less than or equal to 70,000 meters, then the value of i is set to be 
equal to 1. 

 
Line 178:  else if (td<=70e3) 
   i=1; 
  

206. An else statement follows; so if td, at line 207, was more than 70,000 
meters, then:  

 
i is set to be equal to 2. 

 
Line  213: else 
   i=2;      
  

207. The subroutine then calculates and returns the value of F0 (D),  using the 
appropriate formula from  [Alg. 6.9]:   

 
Line 216: return a[i] + b[i] *td +c[i] * log(td); 
 
 
 
 
 



 
Chapter 19: H0f  
 
H0 Frequency gain function for scatter fields; subroutine: h0f. 
 
Note: Used with both point-to-point mode and area mode.  Called by ascat.  
 
From ITMD Section 25: 
 
This is the H01 function for scatter fields as defined in the Algorithm, Section 6,  
“Addenda – numerical approximations.” 
 
Background:  
 
From the Algorithm, Section 6,  “Addenda – numerical approximations.”  
 
 This section starts by mentioning:  

 
“Part of the algorithm for the ITM consists in approximations for the standard 
functions that have been used.  In these approximations, computational simplicity 
has often taken greater priority than accuracy.”   

 
The Algorithm later states, following equation (6.9): 
 

“The frequency gain function may be written as  
 
  H0  =  H00(r1 , r2 , ηs , ) +∆H0     (6.10) 
 where 
  ∆H0  = 6 (0.6 − log ns) * log ss  * log r2/ss r1   (6.11) 
 

and where H00 is obtained by linear interpolation between its values when ns is an 
integer.  For ηs = 1, …, 5 we set 
 

H00(r1 , r2 , j ) =  ½[ H01(r1 , j ) + H01(r2 , j )     (6.12) 
 
with 
 
 H01(r , j )   =     10 log (1 + 24r-2 + 25 r-4)  for j = 1,   (6.13) 
          10 log (1 + 45r-2 + 80 r-4)  for j = 2, 
   10 log (1 + 68r-2 + 177 r-4)  for j = 3, 
   10 log (1 + 80r-2 + 395 r-4)  for j = 4, 

    10 log (1 + 105r-2 + 705 r-4)  for j = 5. 
 

For ηs > 5, we use the value for ηs = 5, and for ηs = 0 we suppose  
 



H00(r1 , r2 , 0) =10 log [(1 + (2)1/2/ r1)2  (1 + (2)1/2/ r2)2 * (r1  +  r2 )/(r1 + r2 +2(2)1/2)] 
          (6.14) 
  

In all of this, we truncate the values of ss and q = r2 / ss r1  at 0.1 and 10.” 
 
 
Call inputs for subroutine h0f: 
r twice the angular distance th, (measured in a ratio of meters, vertical to meters, 

horizontal, not radians as in TN101 Section 9.2)  times the effective height of the 
terminal antenna (r1 = transmit, r2 = receive) in meters, divided by a wavelength 
at the frequency selected, in meters.  Units (for itm.cpp) cancel out to be 
dimensionless, not radians as in TN101 Section 9.2.  

et the value of η s , the “scatter efficiency factor” 
 
Declares private, or local, arguments:  
 
double a[5]={25.0, 80.0, 177.0, 395.0, 705.0}; 
double b[5]={24.0, 45.0,  68.0,  80.0, 105.0}; 
double q,  
double x; 
double h0fv,  
double temp;  
int it; 
 
This subroutine: 
 

208. Presets it to be equal to: the integer value of input value et, (which is equal 
to the value of ηs, the scatter efficiency factor).  This follows from the statement 
in the Algorithm, Section 6, following equation (6.11), which states: “and where 
H00 is obtained by linear interpolation between its values when η s is an integer. 

 
Line 170:  it=(int)et;  
 

209.  Initiates an if statement.  If it is less than or equal to zero, then: 
a. the value of it is reset to be equal to 1. 
b. q is set to be equal to 0.0. 

  
Line 172:    if (it<=0) 
  { 
  it=1; 
  q=0.0; 
   } 

 
210. An else if statement follows; if it, at line 172, was equal to or greater than 

5, then:  
a. the value of it is reset to be equal to 5. 



b. q is set to be equal to 0.0. 
 
Line 178:  else if (it>=5) 
  { 
   it=5; 
   q=0.0; 
  }   
 
Steps 2 and 3 prepare for the use of the procedure associated with equations [Alg. 6.12 
and Alg 6.13] stated in the background section, above. 
 
 

211. An else statement follows; so if it, at line 172, was more than 0, and less 
than 5, then:  

 
q is set to be equal to the value of et, less the value of it. 

 
Line 184: else 
  q=et-it;      
  

212. The value of temp is set to be equal to (1/r), and then the value of x is set 
to be equal to the value of temp2.   The value of x therefore becomes equal to 
(1/r)2. 
 

Line 189:  temp=1.0/r; 
  x=temp*temp; 
 

The value of h0fv is set to be equal to:  4.343 * log((a[it-1]*x+b[it-1])*x+1.0); this 
calculates the  H01(r , j ) =  10 log (1 + (b)r-2 + (a) r-4)  for j = it -1, as per [Alg 
6.13], except that the constant multiplier value 4.343 replaces the constant 
multiplier value 10.   
 

Why is the 10 replaced with 4.343?  The obvious expectation is that it is due to the 
nonstandard units of angular measure used for th, which was used to calculate the values 
of r1 and r2 in the ascat subroutine, which later called this subroutine.  The angular 
distance, th, a.k.a. θ, or theta) is calculated and defined as (vertical distance in 
meters/horizontal distance in meters) in the code, instead of in radians.   
 
Tech Note 101 states that θ is in units of radians.   George Hufford, the author of the 
Algorithm, does not note  the use of any such conversion factor in the Algorithm 
equations 6.13 and 6.14, which use the constant multiplier value 10, that is correct for r1 
and r2 calculated with θ defined in units of radians.   

  
In the equation [Alg. 4.62], in Section 4.3.1, “The Function Ascat.” the angular distance θ 
is still being specified in radians, as becomes clear in Section 6, equations [Alg 6.13 and 
6.14].   



 
How do we convert θ, a.k.a. th, to radians?   There are 2π radians in a full cycle, or 360o.  
A radian is defined as the angle subtended at the center of a circle by an arc of 
circumference that is equal in length to the radius of the circle.  Draw this construct on a 
circle, with one radii of length r on the horizontal plane, and a distance of r on the 
circumference between the two radii.  Now draw a vertical line from the point where the 
non-horizontal radii touches the circumference of the circle, to a point perpendicular to 
the horizontal radii, forming a right triangle. The radius then becomes the hypotenuse of a 
right triangle with an angle, subtended at the center of the circle, between the two radii, 
of one radian, or 57.2958 degrees.  The length of the vertical line is then equal to the sine 
function of the angle θ, which is equal to the ratio of the length of the vertical line to the 
length of the hypotenuse of the triangle, which is equal to r.  So we can now obtain the 
length of the vertical line by multiplying sin θ by the hypotenuse length, r. This results in 
the equation: 
    V = (sin θ) * r   
 
The length of the horizontal line is then equal to the cosine function of the angle θ, which 
is equal to the ratio of the length horizontal line of the triangle to the length of the 
hypotenuse of the triangle, which is equal to r.  So we can obtain the length of the 
horizontal line by multiplying cos θ by the hypotenuse length, r. This results in the 
equation: 
    H = (cos θ) * r   
 
We can now obtain the ratio of the vertical length to the horizontal length by dividing the 
equation for Y by the equation for X. and canceling out the “r” terms:  
 
   V/H = [(sin  θ) * r] / [ (cos θ) * r ]  =  (sin θ)/(cos θ)  
 
In trigonometry, by definition of the tangent function, tan x =  (sin x) / (cos x), so the 
equation becomes:  
 
   V/H =  (tan θ) in radians 
 
This can be used to convert from the angle in radians or degrees, to the ratio used for θ 
in the code, but we also need to know how to convert from the vertical-distance-to- 
horizontal-distance ratio (V/H ratio) used for th, to radians, in case we later run into a 
formula that cannot handle the V/H ratio.  For this we use the arctan subroutine function:   
 
   arctan (V/H) = θ in radians (rads) 

 
Here, we will attempt to utilize these conversion ratios.    

 
 

Line 192:  h0fv=4.343*log((a[it-1]*x+b[it-1])*x+1.0); 
  



213. Initiates an if statement.  If q , which holds the difference value between 
(double) et and (integer) it, is not equal to zero (which would indicate et = it),  
then:  h0fv is set to be equal to:  

 
(1.0-q) * h0fv+q*4.343*log((a[it]*x+b[it])*x+1.0) 

 
Here the value of h0fv is interpolated.  The H01 value for it is calculated to be: 
   H01(for it) = 4.343 * log((a[it]*x+b[it])*x+1.0).   The term (1 – q) interpolates 
the H01 value calculated for it , the integer value of ηs, the scatter efficiency factor, 
to approximate the H01 value for et = ηs.  
 
This is calculated as per [Alg 6.13], except that the constant multiplier value 10 
has been multiplied by a fudge factor of .4343.  A discussion of this fudge factor, 
which appears twice in this subroutine, is found in the Chapter on Aknfe.   It 
would be best if this fudge factor can be eliminated after making the other error 
corrections needed.  A single change of a constant value, by multiplying 10 by 
.4343, will not do the job properly; as the equations use values of  (r1)2, (r2)2 , (r1)4 
and (r2)4 multiplied by varying constants. 

 
MAJOR PROBLEM NOTE:  Therefore, since r1 and r2   were calculated with a value 
of th in the wrong units, it appears to this author that the subroutine will produce 
errant and erratic results; the replacement of the constant value 10 by 4.343 may have 
occurred in order to produce results that were somewhat close to the empirical results 
from the field measurements.  The author finds no other solid mathematical basis for 
the change from 10 to 4.343 at several locations in the code. 

   
How can this be corrected?  By using the equation:   
 

 arctan (V/H) = θ in radians (rads) 
 
To convert the unit value of th to radians at the end of hzns,  prior to its use in 
calculating r1 and r2; and replacing the constant 4.343 with the correct 
constant, 10, stated in [Alg. 6.13 and 6.14], in the subroutines. 
  

Line 194: if (q!=0.0) 
 
  h0fv=(1.0-q)*h0fv+q*4.343*log((a[it]*x+b[it])*x+1.0); 
 
Here we find the second instance of the application of the fudge factor .4343 in this 
subroutine. 
 

 
214. Subroutine h0f  ends by returning the H01 (r, et) function output value 

stored in h0fv:  
 
Line 197:  return h0fv; 



 
Chapter 20: Avar 
 
Longley-Rice Analysis of Variants subroutine, avar. 
 
 
Note: This subroutine is called by subroutine point-to-point or area. In version 7.0 of the 
ITMDLL.cpp, released in June of 2007, there are two alternative subroutines, 
point_to_pointDH and point_to_pointMDH, that provide improvements and also call 
avar.   Calls curve. 
 
This subroutine calculates the additional loss resulting from statistical analysis of long 
term variability due to time (reliability), location, and/or situational variability 
(confidence), depending upon the operating mode determined by the mode of variability 
code input. The subroutine reports out a single value of loss, avarv, in decibels (dB), 
which includes aref, the “reference attenuation” summed with the additional statistical 
loss.  
 
Derived from the Irregular Terrain Model description by George Hufford, 2002, (ITMD), 
and from “A manual for ITM, “Irregular Terrain Model”, a manual for the FORTRAN 
user, found at: http://flattop.its.bldrdoc.gov/itm/itm_man.txt, compared to the ITM.cpp 
prepared by J. D. McDonald and John Magliacane for compilation on unix and linux 
systems.  “Line” numbers refer to the ITM.cpp as line numbered by Bloodshed 
Software’s DevC++ print function.  “Alg” numbers refer to the algorithm formulas in 
“The ITS Irregular Terrain Model, version 1.22, the Algorithm” by G. A. Hufford, 1995.   
“ITS67” numbers refer to the algorithm formulas in “ESSA Technical Report ERL 79-
ITS 67, Prediction of Tropospheric Radio Transmission Over Irregular Terrain, A 
Computer Method – 1968” by A.G.Longley and P.L.Rice.  
 
From ITMD Section: 27:  
 
Subroutine “lrprop will stand alone to compute aref.  To complete the story, however, 
one must find the quantiles of the attenuation and this is what avar will do.  It, too, is a 
stand alone subroutine, except that it requires the output from lrprop, as well as values in 
a ‘variability parameters” common block.  These latter values consist of :  
  A control switch lvar, 
  The standard deviation of situation variability (confidence) sgc,  

The desired mode of variability mdvar, and; 
  The climate indicator klim. 
   
Of these, sgc is output, and may be used to answer the inverse problem; with what 
confidence will a threshold signal be exceeded. 
 
 
 



Subroutine inputs: 
 
propv  array propv with elements: 
lvar  a control switch, indicating a reset of input values is required. 
sgc  the standard deviation of situation variability (confidence) 
mdvar found as the value of propv.mdvar, the mode of variability.  In subroutine 

point_to_point, mdvar is set to be equal to 12, a combination of modes 10 
and 2.  The value “10” is added for the point-to-point mode, which causes 
location variability to be eliminated.  [However, this should not be true in 
version 7, subroutine point_to_pointMDH, which allows location 
variability to be set].  The value “2” indicates “Mobile” mode, where 
reliability is calculated as a combination of time and location variability.  
Confidence in mode 2 (or 12) is given by the situation variability. 

  
NOTE:  It is interesting to note that for TV or FM broadcast use, in point-to-point mode, 
the mdvar is set to Mobile mode, not Broadcast.  The code for mdvar, the variability 
mode, which sets the mode of operation, is a tens and single digit code.  The single digits 
represent: 

0 - Single message mode.  Time, location and situation variability are 
combined together to give a confidence level. 

1 – Accidental mode.  Reliability is given by time availability.  
Confidence is a combination of location and situation variability. 

2 – Mobile mode.  Reliability is a combination of time and location 
variability. Confidence is given by the situation variability. 

3 – Broadcast mode. Reliability is given by the statement of –at least- qT 
of the time in qL of the locations.  Confidence is given by the 
situation variability. 

 
The tens code is:  No tens; default to area mode: combined code is 0 to 3. 

     10 – For the point-to-point mode.  Location variability is eliminated. 
     20 – For interference problems.  Direct situation variability is 

eliminated. Note that there may be a small residual situational 
variability. 

 
So the setting of mdvar equal to 12, hard-coded into the ITMDLL.cpp, means that the 
current version of ITMDLL.cpp is never intended to be used for broadcast unless the 
value of mdvar is changed in the source code and the ITMDLL is re-compiled. 
 
Note: Therefore, for broadcast reception prediction use, the ITMDLL should be 
modified to allow external resetting of the mdvar; this is especially critical in light of 
the new optional subroutine point_to_pointMDP, which allows for setting the 
percentage value for location. 
 
klim,  or Radio_climate the radio climate code; set by the user or obtained from a 

preset list.  Customary Default value is 5.  The climate 
codes are: 



1. Equatorial; (Africa, along the equator)  
2. Continental Subtropical; (Sudan region)  
3. Subtropical (a.k.a. Maritime Subtropical (West Coast of 

Africa);  
4. Desert (Death Valley, NV; Sahara);  
5. Continental Temperate (usual general U.S. default);  
6. Maritime Temperate Over Land ( In U. S., California to 

State of Washington; West Coast of Europe including 
U.K.),  

7. Maritime Temperate, Over Sea. 
 
 
Call inputs: 
 
zzt,  a.k.a. zr, qerfi (rel), ztime, time; rel; reliability; time reliability; a statistical 

percentage of time availability; set as  .01 to .99   Usual default setting; 
for NTSC (analog) TV, FM broadcast and most FM analog transmissions, 
set to 0.50 ( 50% for FCC 50,50); for Digital FM IBOC sidebands, set to 
.90 to .98, or for  television (DTV), set to 0.97 (97% for FCC 50, 97). 

zzl,  a.k.a., zloc, loc, location, location variability; a statistical percentage of 
location availability; set to 0.01 to 0.99.  Internally fixed to zero in 
point_to_point; as point_to_point calls subroutine avar with the location 
variable set at 0.0.   In the new version 7, the optional alternative 
subroutine point_to_pointMDH allows this to be set by the user.  Usual 
user default setting; 0.50 (50%)  for 50% of locations.  

zzc,  a.k.a. zc, zconf, qerfi(conf), conf, confidence; a statistical percentage of 
confidence in the situation; set as  .01 to .99 .  In avar, the definition of 
confidence varies with the value of mdvar, the mode of variability; for 
mdvar = 0, for example, time, location, and situation variability are 
combined together.  For point_to_point mode, mdvar = -1.  See chapter on 
avar or itm.man.   Usual default setting; 0.50 ( 50%) (Note: often used 
instead of location calculation, i.e. to approximate 50% of locations; 
however, avar  has separate inputs for confidence and location, and 
point_to_point calls avar to calculate the reference attenuation with the 
location variable set at 0.0. See note at input loc below regarding optional 
subroutine point_to_pointMDH.) 

 
prop_type &prop,  array prop with elements:  

a. Prop.wn  wave number, = freq. in MHz/47.7 MHz*m;  
units in 1/meters 

b. prop.ens  surface refractivity (refractivity of the atmosphere) 
c. prop.gme  effective earth curvature 
d. prop.zgnd  surface impedance array, consisting of: 
e. prop.zgndreal real surface impedance (resistance component) 
f. prop.zgndimag imaginary surface impedance (reactive component) 

 



propv_type &propv, array propv with elements: 
Outputs: 
 
 
 
 
defines private, or local, arguments:  
 
static int kdv; 
static doubles: 

dexa, 
  de,  

vmd,  
vs0,  
sgl,  
sgtm,  
sgtp,  
sgtd,  
tgtd, 
gm,  
gp,  
cv1,  
cv2,  
yv1,  
yv2,  
yv3,  
csm1,  
csm2,  
ysm1,  
ysm2, 

 ysm3,  
csp1,  
csp2,  
ysp1,  
ysp2,  
ysp3,  
csd1,  
zd,  
cfm1,  
cfm2, 

 cfm3,  
cfp1,  
cfp2,   
cfp3; 

 
 



The following tables are on lines 863 to 885;  
double bv1[7]={-9.67,-0.62,1.26,-9.21,-0.62,-0.39,3.15}; 
double bv2[7]={12.7,9.19,15.5,9.05,9.19,2.86,857.9}; 
double xv1[7]={144.9e3,228.9e3,262.6e3,84.1e3,228.9e3,141.7e3,2222.e3}; 
double xv2[7]={190.3e3,205.2e3,185.2e3,101.1e3,205.2e3,315.9e3,164.8e3}; 
double xv3[7]={133.8e3,143.6e3,99.8e3,98.6e3,143.6e3,167.4e3,116.3e3}; 
double bsm1[7]={2.13,2.66,6.11,1.98,2.68,6.86,8.51}; 
double bsm2[7]={159.5,7.67,6.65,13.11,7.16,10.38,169.8}; 
double xsm1[7]={762.2e3,100.4e3,138.2e3,139.1e3,93.7e3,187.8e3,609.8e3}; 
double xsm2[7]={123.6e3,172.5e3,242.2e3,132.7e3,186.8e3,169.6e3,119.9e3}; 
double xsm3[7]={94.5e3,136.4e3,178.6e3,193.5e3,133.5e3,108.9e3,106.6e3}; 
double bsp1[7]={2.11,6.87,10.08,3.68,4.75,8.58,8.43}; 
double bsp2[7]={102.3,15.53,9.60,159.3,8.12,13.97,8.19}; 
double xsp1[7]={636.9e3,138.7e3,165.3e3,464.4e3,93.2e3,216.0e3,136.2e3}; 
double xsp2[7]={134.8e3,143.7e3,225.7e3,93.1e3,135.9e3,152.0e3,188.5e3}; 
double xsp3[7]={95.6e3,98.6e3,129.7e3,94.2e3,113.4e3,122.7e3,122.9e3}; 
double bsd1[7]={1.224,0.801,1.380,1.000,1.224,1.518,1.518}; 
double bzd1[7]={1.282,2.161,1.282,20.,1.282,1.282,1.282}; 
double bfm1[7]={1.0,1.0,1.0,1.0,0.92,1.0,1.0}; 
double bfm2[7]={0.0,0.0,0.0,0.0,0.25,0.0,0.0}; 
double bfm3[7]={0.0,0.0,0.0,0.0,1.77,0.0,0.0}; 
double bfp1[7]={1.0,0.93,1.0,0.93,0.93,1.0,1.0}; 
double bfp2[7]={0.0,0.31,0.0,0.19,0.31,0.0,0.0}; 
double bfp3[7]={0.0,2.00,0.0,1.79,2.00,0.0,0.0}; 
 
static bool ws,  
static bool w1; 
double rt=7.8,  

rl=24.0,  
avarv,  
q,  
vs,  
zt,  
zl,  
zc; 

double sgt,  
yr,  
temp1,  
temp2; 

int temp_klim=propv.klim-1; i.e. is equal to one less than the radio climate code klim; 
 
This subroutine: 
 

1. An if statement is initiated.  If the value of propa.lvar, the switch code, is 
greater than zero, then: 

 



Line 891:  if (propv.lvar>0) 
  { 
 
  

2.  A switch statement is initiated with input of the value of prop.lvar.  The 
switch statement selects the case to act on, based on the integer value read 
from prop.lvar. 

 
Line 893:         switch (propv.lvar) 
   { 
 

3. A  default statement is initiated, with an if statement following, so if 
prop.lvar is not equal to either: 1, 2, 3, or 4, and if propv.klim, the radio 
climate variable, is outside of its normal range  of 1 to 7, then: 

a. propv.klim is set to be equal to the normal default of 5; 
b. temp_klim is set to be equal to 4, or one less than propv.klim, and  
c. prop.kwx, the error indicator, is set to be the greater of prop.kwx or 2, 

indicating that impossible parameters have been replaced with default 
values.  

 
Line 895:   default: 
    if (propv.klim<=0 || propv.klim>7) 
    { 
     propv.klim=5; 
     temp_klim=4; 
     prop.kwx=mymax(prop.kwx,2); 
    } 
 
 
 

4. The values of the  arguments, cv1, cv2, etc., are  populated from the 
corresponding values of table arrays bv1[temp_klim], bv2[temp_klim], etc. on 
lines 863 to 885, where temp_klim is equal to an integer value between zero 
and six. 

 
 Line 903:   cv1=bv1[temp_klim]; 
   cv2=bv2[temp_klim]; 
   yv1=xv1[temp_klim]; 
   yv2=xv2[temp_klim]; 
   yv3=xv3[temp_klim]; 
   csm1=bsm1[temp_klim]; 
   csm2=bsm2[temp_klim]; 
   ysm1=xsm1[temp_klim]; 
   ysm2=xsm2[temp_klim]; 
   ysm3=xsm3[temp_klim]; 
   csp1=bsp1[temp_klim]; 



   csp2=bsp2[temp_klim]; 
   ysp1=xsp1[temp_klim]; 
   ysp2=xsp2[temp_klim]; 
   ysp3=xsp3[temp_klim]; 
   csd1=bsd1[temp_klim]; 
   zd=bzd1[temp_klim]; 
   cfm1=bfm1[temp_klim]; 
   cfm2=bfm2[temp_klim]; 
   cfm3=bfm3[temp_klim]; 
   cfp1=bfp1[temp_klim]; 
   cfp2=bfp2[temp_klim]; 
   cfp3=bfp3[temp_klim]; 
 

5. If lvar was equal to 4, then case “four” applies, and: 
a. Kdv is set to be equal to prop.mdvar. 
b. Ws has its Boolean value set depending upon whether kdv is greater 

that or equal to 20; therefore, ws will be true for a value of mdvar 
greater than 20, indicating a interference study is in progress.  

 
 Line 927:   case 4: 
   kdv=propv.mdvar; 
   ws=kdv>=20; 
 

6. If ws is true, 20 is subtracted from the value of kdv, leaving only a single digit 
value of mdvar; either 0, 1, 2, or 3.  

 
 Line 931: if (ws) 
      kdv-=20; 
 

7.  w1 has its Boolean value set depending upon whether kdv is greater than or 
equal to 10. w1 will be true, indicating a point-to-point calculation is in 
progress. 

 
Line 934:  w1=kdv>=10; 
 

8.  If w1 is true, 10 is subtracted from the value of kdv, leaving only a single 
digit value of mdvar; either 0, 1, 2, or 3.  

 
 Line 936: if (w1) 
      kdv-=10; 
 

9. If the value of kdv is now less than zero, or more than 3, either case being 
outside the correct range of zero to 3, then: 

a. kdv is set to be equal to zero. 
b. Prop.kwx is set to be equal to the greater of prop.kwx or 2, indicating 

that an impossible parameter has been replaced with a default value.  



 
Line 939:   if (kdv<0 || kdv>3) 
   { 
    kdv=0; 
    prop.kwx=mymax(prop.kwx,2); 
   } 
 
  

10. If lvar was equal to 3, then case “three” applies, and: 
a. q is set to be equal to log(0.133*prop.wn)  

where          
prop.wn is the wave number, equal to:  
(the frequency in MHz / 47.7 MHz*meters) 

b. gm is set to be equal to: cfm1 + cfm2/(cfm3*q)2 +1 
c. gp is set to be equal to: cfp1 + cfp2/(cfp3*q) 2 +1  

 
Line 945:    case 3: 
   q=log(0.133*prop.wn); 
 
   /* gm=cfm1+cfm2/(pow(cfm3*q,2.0)+1.0); */ 
   /* gp=cfp1+cfp2/(pow(cfp3*q,2.0)+1.0); */ 
 
   gm=cfm1+cfm2/((cfm3*q*cfm3*q)+1.0); 
   gp=cfp1+cfp2/((cfp3*q*cfp3*q)+1.0); 
 

11.  If lvar was equal to 2, then case “two” applies, and the value of dexa is set to 
be equal to: 

  (18e6*prop.he[0])1/2 + (18e6*prop.he[1])1/2 + (575.7e12/prop.wn)1/3

  where  
   prop.he[0] is the transmitter antenna effective height above ground 
   prop.he[1] is the receive antenna effective height above ground 
   prop.wn is the wave number, equal to:  

(freq. in MHz / 47.7 MHz*meters) 
 
Line 954:   case 2: 

          
dexa=sqrt(18e6*prop.he[0])+sqrt(18e6*prop.he[1])+pow((575.7e1
2/prop.wn),THIRD); 

 
12.  If lvar was equal to 1, then case “one” applies, and; 

a.  if prop.dist is less than dexa, then de is set to be equal to 
130,000*prop.dist/dexa. 

b. An else statement follows; therefore, if prop.dist is equal to or greater 
than dexa, then de is set to be equal to 130,000 + prop.dist − dexa. 

 
 



Line 957:   case 1: 
   if (prop.dist<dexa) 
    de=130e3*prop.dist/dexa; 
   else 
    de=130e3+prop.dist-dexa; 
  } 
 

13. Subroutine curve is called with inputs  (cv1,cv2,yv1,yv2,yv3,de); 
The subroutine inserts the parameters chosen by the climate code from the 
table into the curve-fitting equation:  
    

curv(c1,c2,x1,x2,x3) = (c1 +c2)/(1. +((de – x2)/x3)2))*((de/x1)2)/(1. +((de/x1)2)) 
   
 Subroutine curve then returns the value calculated by the equation, and vmd is set 
to be equal to the value returned.   
 
Line 964:  vmd=curve(cv1,cv2,yv1,yv2,yv3,de); 
 

14.  Subroutine curve is called with inputs (csm1,csm2,ysm1,ysm2,ysm3,de); 
The subroutine inserts the parameters chosen by the climate code from the 
table into the curve-fitting equation:  
    

curv(c1,c2,x1,x2,x3) = (c1 +c2)/(1. +((de – x2)/x3)2))*((de/x1)2)/(1. +((de/x1)2)) 
   
 Subroutine curve then returns the value calculated by the equation, and sgtm is set 
to be equal to this value multiplied by gm.   
 
Line 965:  sgtm=curve(csm1,csm2,ysm1,ysm2,ysm3,de)*gm; 
 

15.   Subroutine curve is called with inputs (csp1,csp2,ysp1,ysp2,ysp3,de); 
The subroutine inserts the parameters chosen by the climate code from the 
table into the curve-fitting equation:  
    

curv(c1,c2,x1,x2,x3) = (c1 +c2)/(1. +((de – x2)/x3)2))*((de/x1)2)/(1. +((de/x1)2)) 
   
 Subroutine curve then returns the value calculated by the equation, and sgtp is set 
to be equal to this value multiplied by gp.   
 
Line 966:  sgtp=curve(csp1,csp2,ysp1,ysp2,ysp3,de)*gp; 
 

16. The value of sgtd is set to be equal to sgtp*csd1; 
 
Line 967: sgtd=sgtp*csd1; 
 

17.  The value of tgtd is set to be equal to (sgtp − sgtd)*zd; 
 



Line 968: tgtd=(sgtp-sgtd)*zd; 
 

18.  If wl is true, a point to point calculation is in progress, and sgl, the standard 
deviation of location variability, is set to be equal to zero. 

   
Line 970: if (w1) 
  sgl=0.0; 
 
 

19.  An else statement follows, so if wl is false, indicating an area mode or an 
interference problem mode calculation is in progress, then:   

a. q is set to be equal to: 1.0-0.8(-prop.dist/50000))*prop.dh*prop.wn 
where 
 prop.dist is the total RF path length, 

  prop.dh is the terrain irregularity factor delta h (∆h), 
  prop.wn is the wave number, = (freq. MHz/47.7 MHz*m.) 
 

b. then sgl, the standard deviation of location variability, is set to be 
equal to: 10.0 * q/(q+13.0); 

 
Line 972:  else 
  { 
   q=(1.0-0.8*exp(-prop.dist/50e3))*prop.dh*prop.wn; 
   sgl=10.0*q/(q+13.0); 
  } 
 

20.  If  ws is true, indicating that an interference study is in progress, then vs0 is 
set to be equal to zero. 

 
Line 978:  if (ws) 
      vs0=0.0; 
 

21. An else statement follows, so for an area mode or point-to-point mode 
calculation, then:  

a. temp1 is set to be equal to (5 + 3(-de/100000)), and is then used to 
calculate vs0: 

b. vs0 is set to be equal to (5 + 3(-de/100000))2   
   
Line 980:   else 
  { 
   /* vs0=pow(5.0+3.0*exp(-de/100e3),2.0); */ 
   temp1=(5.0+3.0*exp(-de/100e3)); 
   vs0=temp1*temp1; 
 
  } 
 



  
22. The setup adjustments required by the lvar switch code have been 

accomplished.  Therefore, propv.lvar is reset to zero.  
 propv.lvar=0; 
 
Line 988:  propv.lvar=0; 
        } 
 

23.  The internal argument variables zt, zl, and zc are set to be equal to the 
percentages of the time, location, and confidence variants stated in the input 
values:  

 
zt=zzt;  time variant (.01 to .99) 
zl=zzl;   location variant (.01 to .99), or 0.0 for a call from  

the point_to_point subroutine. 
  zc=zzc; confidence variant (.01 to .99) 
 
Line 991:  zt=zzt; 

 zl=zzl; 
  zc=zzc; 
 
 

24.  The mix of statistical variants to be used for the current operating mode are 
set up using a switch command, with the active case selected by the value of 
kdv. The value of  kdv  was set in steps 5 to 8 to be equal to the units value of 
the mode of variability (mdvar) code, and checked in step 9 to make sure that 
it was one of the following four integers; if it was not, zero was substituted.   
For: 

a. kdv = 0 - Single message mode.  Time, location and situation 
variability are combined together to give a confidence level.  Case zero 
applies, and: 

i. the value of zt (time variant) is set to be equal to the value of zc 
(confidence variant). 

ii. the value of zl (location variant) is set to be equal to the value 
of zc (confidence variant). 

b. kdv = 1 – Accidental mode.  Reliability is given by time availability.  
Confidence is a combination of location and situation variability.   
Case one applies, and the value of zl (location variant) is set to be 
equal to the value of zc (confidence variant). 

c. kdv = 2 – Mobile mode.  Reliability is a combination of time and 
location variability. Confidence is given by the situation variability. 
Case two applies, and: the value of zl (location variant) is set to be 
equal to the value of zt (time variant). 

d. kdv = 3 – Broadcast mode. Reliability is given by the statement of  [at 
least] qT of the time in qL of the locations.  Confidence is given by the 
situation variability. Case three applies; the variants are independent. 



Line 995: switch (kdv) 
            { 
   case 0: 
   zt=zc; 
   zl=zc; 
   break; 
 
   case 1: 
   zl=zc; 
   break; 
 
   case 2: 
   zl=zt; 
  } 
  

25. An if statement is initiated.  If  the value of either fabs(zt),  fabs(zl) or  
fabs(zc) is greater than 3.1, then the value of prop.kwx, (the error indicator 
errnum),  is set to be equal to the greater of prop.kwx or 1, indicating “caution, 
parameters are close to limits”. 

  
Line 1010: if (fabs(zt)>3.1 || fabs(zl)>3.1 || fabs(zc)>3.1) 
  prop.kwx=mymax(prop.kwx,1); 

 
26.  An if statement is initiated; if the value of zt, the time variant, is less than 

zero, then the value of sgt is set to be equal to the value of sgtm calculated in 
step 14. 

 
Line 1013:  if (zt<0.0) 
  sgt=sgtm; 
  

27.  An else if statement follows, so if the value of zt, the time variant, is equal to 
or greater than zero and less than or equal to zd, then the value of sgt is set to 
be equal to the value of sgtp calculated in step 15. 

  sgt=sgtp; 
 
Line 1016: else if (zt<=zd) 
  sgt=sgtp; 
 
  

28.  An else statement follows, so if the value of zt, the time variant, is equal to or 
greater than zero and greater than zd, then the value of sgt is set to be equal to 
the value of: sgtd + tgtd / zt.. 

  
Line 1019:  else 
  sgt=sgtd+tgtd/zt; 
  



29.  The value of temp1 is set to be equal to sgt*zt, the value of temp2 is set to be 
equal to sgl*zl, and then the values of temp1 and temp2 are used to calculate 
the value of vs to be equal to: 

 
  = vs0 + (sgt*zt)2/(rt+zc*zc) + (sgl*zt)2/(rl+zc*zc);  
 
Line 1024: temp1=sgt*zt; 
  temp2=sgl*zl; 
 
  vs=vs0+(temp1*temp1)/(rt+zc*zc)+(temp2*temp2)/(rl+zc*zc); 
  

30. An if statement is inititated.  If kdv is equal to zero, indicating an area mode 
calculation, then: 

a. The value of yr is set to be equal to zero. 
b. The value of propv.sgc is set to be equal to: ((sgt)2 + (sgl)2 + vs)1/2 

  
Line 1029:  if (kdv==0) 
        { 
  yr=0.0; 
  propv.sgc=sqrt(sgt*sgt+sgl*sgl+vs); 
        } 
    

31.  An else if statement follows; so if kdv is equal to one, indicating a point-to-
point mode calculation, then: 

a. The value of yr is set to be equal to sgt * zt. 
b. The value of propv.sgc is set to be equal to: ((sgl)2 + vs)1/2 

  
Line 1035: else if (kdv==1) 
       { 
  yr=sgt*zt; 
  propv.sgc=sqrt(sgl*sgl+vs); 
        } 
  

32.  An else if statement follows; so if kdv is equal to two, indicating a 
interference study calculation, then: 

a. The value of yr is set to be equal to ((sgt)2 + (sgl)2 )1/2 * zt. 
b. The value of propv.sgc is set to be equal to: (vs)1/2 

  
Line 1041: else if (kdv==2) 
       { 
  yr=sqrt(sgt*sgt+sgl*sgl)*zt; 
  propv.sgc=sqrt(vs); 
        } 
 
  



33. An else statement follows;  so if if kdv is not equal to 0, 1, or 2, it is by default 
equal to 3.  This indicates a broadcast mode calculation, so: 

a. The value of yr is set to be equal to sgt*zt + sgl* zl. 
b. The value of propv.sgc is set to be equal to: (vs)1/2 

  
Line 1047:  else 
 { 
  yr = sgt*zt + sgl*zl; 
  propv.sgc=sqrt(vs); 
 } 
 
  

34.   The value of avarv is then set to be equal to:  
 
prop.aref – vmd – yr – propv.sgc*zc; 

 
  where 

prop.aref  
vmd 
yr 
 propv.sgc 
zc; 

 
Line 1053:  avarv=prop.aref-vmd-yr-propv.sgc*zc; 
 

35. If the value of avarv is less than zero, then the value of avarv is reset to be:   
   
   avarv =  avarv*(29.0-avarv)/(29.0-10.0*avarv); 
 
Line 1055: if (avarv<0.0) 
  avarv=avarv*(29.0-avarv)/(29.0-10.0*avarv); 
 

36. The subroutine avar then returns the value of avarv. 
 
Line 1058:   return avarv; 

       } 
 
  
 
 
 
 
 



 
Chapter 21: Curve 
 
Curve (a.k.a. CURV) subroutine curve  
 
Note: Used with point-to-point and area modes.  Called by avar, mid-routine.  
 
From ITMD Section 30: 
 
Function curv: 
 
curv(c1,c2,x1,x2,x3) = (c1 +c2)/(1. +((de – x2)/x3)2))*((de/x1)2)/(1. +((de/x1)2)) 
 
Subroutine Call inputs: 
 
Double constants:   
  &c1 
 &c2 
 &x1 
 &x2 
 &x3 
 &de 
 
defines private, or local, arguments:  
 
double: 

temp1 
temp2 
 

This subroutine: 
 

215. Sets temp1 to be equal to: ((de –x2)/x3)2         
216. Sets temp2 to be equal to: (de/x1)2 
217. Calculates and returns the value of (c1 +c2/(1 +temp1))*temp2/(1 + 

temp2). 
Line 846:  temp1=(de-x2)/x3; 
  temp2=de/x1; 
 
  temp1*=temp1; 
  temp2*=temp2; 
 
  return (c1+c2/(1.0+temp1))*temp2/(1.0+temp2); 

 
 
 



 
In the Area Mode: 

 
Note this comment as to the use of the area mode:   
 
In 1982, from “A Guide to th Use of the ITS Irregular Terrain Model in the Area 
Prediction Mode”, by George Hufford, Anita Longley, and W.A. Kissick wrote: 
 
 “In the case of a specific operational area or a specific coverage area, one is 
confronted with a different problem.  Here one has a large multitude of possible 
propagation paths, each of which can presumably be described in detail.  One might, 
therefore, want to consider point-to-point calculations for each of them.  But the sheer 
magnitude of the required input data makes one hesitant.  An alternative, which requires 
far less input data, is to use an area prediction model, particularly if the model provides 
by itself the required statistics.   Even in the case of a specific communications link, the 
required detailed information for the propagation path may be unobtainable so that one is 
forced to use the less demanding area prediction model.  Of course, in doing so, one 
expects to lose in precision and in the dependability of the results.” 
 
Today, SPLAT!, SPLAT with PLOP, and many commercial ITM software packages,  can 
do these detailed, all-points calculations, using any of several available detailed 
databases.  The average desktop PC can run the program.  So the use of area mode is 
essentially obsolete.  The subroutine “Area”, and its associated area-mode only 
subroutines, is included only so the book will be a complete reference to the 
ITMDLL.cpp. 

 

 
 
 
 
 
 
 
 



 
Chapter 22:  Area   
 
“Area Mode Calculations” subroutine, area. 
 
Note: This is the main subroutine for the area mode.  Calls qerfi, qlrps, qlra, lrprop, and 
then avar.      
 
Uses information in arrays and input values listed (no terrain elevations) as inputs above 
in order to calculate dbloss, the path attenuation (radio signal strength loss) along the path 
between two terminals, a transmit site and a receive location. 
 
From ITMD Sections 1, 2, and 42: 
 
Call inputs: 
 
long ModVar,    mode of variability 
double deltaH,   delta H, (∆h), the terrain irregularity factor 
double tht_m,    transmitter antenna height above ground level, in meters 
double rht_m,    receive antenna height above ground level, in meters 
double dist_km,   total RF path distance, in kilometers 
int TSiteCriteria,   transmitter site selection criteria 
int RSiteCriteria,   receive site selection criteria 
double eps_dielect,   earth dielectric constant 
double sgm_conductivity,  earth conductivity 
double eno_ns_surfref,  refractivity of the atmosphere (a.k.a. atmospheric bending 

constant) 
double frq_mhz,   frequency in MHz, range 20 to 20000 MHz 
int radio_climate,                    klim, or radio climate code (1 to 7; the nominal default is 5, 

Continental Temperate) 
int pol,    polarity of the RF signal and receive antenna 0=H, 1=V 
double pctTime,   time variant, expressed as a decimal percentage (.01 to .99) 
double pctLoc,   location variant, as a decimal percentage (.01 to .99) 
double pctConf,   situational confidence variant, decimal percent (.01 to .99) 
 
 
User Selected Input Parameters: 
 
pol:   0-Horizontal, 1-Vertical 
 
TsiteCriteria:   0 - random, 1 - careful, 2 - very careful 
 
RSiteCriteria:  0 - random, 1 - careful, 2 - very careful 
 



radio_climate: 1-Equatorial,  
2-Continental Subtropical,  
3-Maritime Tropical, 

  4-Desert,  
5-Continental Temperate,  (nominal default)  
6-Maritime Temperate, Over Land, 
7-Maritime Temperate, Over Sea 
 

ModVar:         0 - Single:  
pctConf is "Time/Situation/Location";  
[pctTime, pctLoc not used] 

1 - Individual:  
pctTime is "Situation/Location",  
pctConf is "Confidence",  
[pctLoc not used] 

2 - Mobile:  
pctTime is "Time/Locations (Reliability)",  
pctConf is "Confidence",  
[pctLoc not used] 

3 - Broadcast:   
pctTime is "Time",  
pctLoc is "Location",  
pctConf is "Confidence" 

 
pctTime, .01 to .99  
pctLoc,  .01 to .99 
pctConf:  .01 to .99 
 
Outputs: 
errnum: ( a.k.a. kwx) Error indicator code: 

 0- No Error. 
1- Warning: Some parameters are nearly out of range. 
            Results should be used with caution. 
2- Note: Default parameters have been substituted for impossible ones. 
3- Warning: A combination of parameters is out of range. 
            Results are probably invalid. 
Other -  Warning: Some parameters are out of range. 

Results are probably invalid. 
  
Outputs: 
 
double &dbloss,   db loss, a.k.a. aref, the reference attenuation 
char *strmode,   string mode for printout: not used at this time 
int &errnum   error number, a.k.a. kwx, the error indicator 
 
Declares private, or local, arguments:  



 
prop_type prop  array prop with array elements: 
propv_type propv  array propv with array elements: 
propa_type propa  array propa with array elements: 
 
double zt, time variant  

zl,  location variant 
zc,  confidence variant (situational variant) 
xlb; 

double fs; free space loss 
long ivar; 
double eps, earth dielectric constant 

eno,  atmospheric bending constant (refractivity of the atmosphere) 
sgm;  

long ipol; polarity 
int kst[2];  
 
 
This subroutine: 
 

218. Sets the value of array kst[0] to be equal to the user input value set for 
TsiteCriteria, and the value of array kst[1] to be equal to the user input value set 
for RsiteCriteria.  

 
Line 1510:  kst[0]=(int)TSiteCriteria; 

 kst[1]=(int)RSiteCriteria; 
  

219. Subroutine qerfi is called with input (pctTime/100.0).   
Subroutine qerfi returns v, the standard normal deviate as a function of the 
complementary probability.  The value of zt is then set to equal the value of v.  

 
  Line 1512: zt=qerfi(pctTime/100.0); 

 
220. Subroutine qerfi is called with input (pctLoc/100.0).   

Subroutine qerfi returns v, the standard normal deviate as a function of the 
complementary probability.  The value of zl is then set to equal the value of v.  

 
Line 1513: zl=qerfi(pctLoc/100.0); 
 

221.  Subroutine qerfi is called with input (pctConf/100.0).   
Subroutine qerfi returns v, the standard normal deviate as a function of the 
complementary probability.  The value of zc is then set to equal the value of v.  

 
 Line 1514: zc=qerfi(pctConf/100.0); 
 

222. The values of the following local arguments and array values are set: 



  
eps = eps_dielect;   earth dielectric constant 

 sgm = sgm_conductivity;  earth conductivity 
 eno = eno_ns_surfref;   atmospheric bending constant (refractivity) 
 prop.dh = deltaH;   delta h (∆h) the terrain irregularity factor 
 prop.hg[0] = tht_m;   transmitter antenna height AGL, in meters  
 prop.hg[1] = rht_m;   receiver antenna height AGL, in meters 
 propv.klim = (long)radio_climate;   radio climate code; as used in itm.cpp 

propv.klim = (int32) radio_climate;  radio climate code; as used in ITMDLL.cpp,   
prop.ens = eno; ens is refractivity of atmosphere reduced to 

sea level (atmospheric bending constant) 
here set equal to eno. 

 prop.kwx = 0;    error code; reset to zero 
 ivar = (long)ModVar;   variable mode; 
 ipol = (long)pol;   polarity; 0 for Horizontal, 1 for Vertical 
 
Line 1515:   eps=eps_dielect; 
  sgm=sgm_conductivity; 
  eno=eno_ns_surfref; 
  prop.dh=deltaH; 
  prop.hg[0]=tht_m; 
  prop.hg[1]=rht_m; 

 /* propv.klim = (__int32) radio_climate; -KD2BD replaced below */ 
 propv.klim=(long)radio_climate; 

  prop.ens=eno; 
  prop.kwx=0; 
  ivar=(long)ModVar; 
  ipol=(long)pol; 
 

223. Subroutine qlrps is called with inputs: 
a. frq_mhz,  frequency in MHz 
b. 0.0,  general system elevation, here set equal to zero. 
c. eno,   surface refractivity reduced to sea level (atmospheric  

bending constant) nominally 301.000 N-units 
d. ipol,   polarity 
e. eps,   earth’s dielectric constant, a.k.a. polarization constant or  

relative permittivity 
f. sgm,   earth conductivity, a.k.a. ground constant, nominally .005 

Siemens/meter  
 
Subroutine qlrps  outputs to prop_type structure (prop_type & prop) : 

g. Prop.wn  wave number 
h. prop.ens  surface refractivity ( updated by qlrps) 
i. prop.gme  effective earth curvature 
j. prop.zgnd  surface impedance 
k. prop.zgndreal  real surface impedance (resistance component) 



l. prop.zgndimag imaginary surface impedance (reactive component) 
 

 Line 1527:  qlrps(frq_mhz, 0.0, eno, ipol, eps, sgm, prop); 
 

224.  Subroutine qlra is called with inputs: 
a. kst,                  array holding transmit & receive site selection criteria 
b. propv.klim, the radio climate code  
c. ivar,   variation mode 
d. array prop, with elements: 

prop.hg[1] receive site ground height ASL in meters 
prop.hg[0] transmit site ground height above sea level(ASL) m.  
prop.dh delta h (∆h), the terrain irregularity factor 

 prop.gme effective earth curvature = 1/effective earth radius 
    

Subroutine qlra populates array prop with calculated values for: 
 

prop.he[0]       transmit antenna effective height above ground level 
(AGL) in meters. 

prop.he[1] receive antenna effective height AGL in meters  
 
prop.dl[0] distance to horizon(obstacle) from transmitter site 

   prop.dl[1] distance to horizon(obstacle) from receiver site 
   prop.the[0] take-off angle from transmitter antenna to horizon 

 or the top of the highest visible obstacle 
   prop.the[1] take-off angle from receiver antenna to horizon 

 or the top of the highest visible obstacle 
   prop.mdp mode of propagation (set to 1) 
   prop.lvar mode reset level switch  
   prop.klim radio climate code 
 
 Line 1528: qlra(kst, propv.klim, ivar, prop, propv); 
 

225. An if statement is initiated.  If propv.lvar, the mode reset level switch, is 
less than one, then prop.lvar is set to be equal to one.  
 

Line 1530:  if (propv.lvar<1) 
  propv.lvar=1; 
 
  

226. Subroutine lrprop is called with inputs: 
a. (dist_km*1000.0) for d, the distance input, required in meters 
b. array prop, and; 
c. array propa. 

 
Subroutine lrprop the populates prop.aref with the calculated value of aref, the 
reference attenuation. 



 
Line 1533:  lrprop(dist_km*1000.0, prop, propa); 
  

227. The free space attenuation fs, is the amount of loss of signal transmitted 
from an isotropic antenna centered in a sphere, as received by a frequency tuned 
antenna embedded in the inner surface of the sphere.  The free space attenuation 
is calculated using this equation, where the inputs are frequency in MHz and 
radius of the sphere (path distance) in kilometers, and the output is in decibels 
(dB): 

  
 fs=32.45+20.0*log10(prop.dist/1000.0) +20.0*log10(frq_mhz); 
 
Line 1534:  fs=32.45+20.0*log10(frq_mhz)+20.0*log10(prop.dist/1000.0); 
  

228.  Subroutine avar is called with inputs: 
a. zt,  time variant  
b. zl,  location variant 
c. zc,  confidence (situational) variant 
d. array prop,  
e. array propv. 
 

Subroutine avar  returns the value of avarv, the reference attenuation with 
additional attenuation due to time, location, and situational variations, in decibels 
(dB).  The value of xlb is then set to equal the sum of the free space attenuation fs 
and the value of avarv. 

 
Line 1535:  xlb=fs+avar(zt, zl, zc, prop, propv); 
 

229. dbloss is then set to be equal to the value of xlb.  
  
Line 1536:  dbloss=xlb; 
  

230. An if statement is initiated. If prop.kwx, the error indicator, is equal to 
zero, then the value of errnum, (error number), is set to be equal to zero. 

 
Line 1538:  if (prop.kwx==0) 
  errnum=0; 
 
 

231. An else statement follows, so if prop.kwx is not equal to zero, then the 
value of errnum is set to equal the value of prop.kwx.   

 
Line 1540:  else 
  errnum=prop.kwx; 
} 
 



 
Chapter 23: Qerfi 

 
QERF Inverted.   The inverse of QERF.  Subroutine qerfi. 
 
Note: This is the parameter preparation subroutine for the area mode.  Called by area. 
Calls mymax. 
 
This is used to prepare the model in the area prediction mode.   The inverse of qerf, gives 
the standard normal deviate as a function of the complementary probability truncated at 
0.000001 and 0.999999 . 
 
From ITMD Section 51: 
 
“The inverse of qerf ---the solution for x to q  = Q(x).   The approximation is due to C. 
Hastings, Jr. (“Approximations for digital computers,” Princeton Univ. Press, 1955) and 
the maximum error should be 4.5e10-4.”   
 
Call inputs: 

 
double q 

 
 
Declares private, or local, arguments:  
 
 double x,  

t,  
v; 

 double c0=2.515516698; 
 double c1=0.802853; 
 double c2=0.010328; 
 double d1=1.432788; 
 double d2=0.189269; 
 double d3=0.001308; 
 
 
 
In this subroutine: 
 

232. The value of x is set to be equal to 0.5 – q. 
 
Line 359:  x=0.5-q; 
  

233.  The value of t is set to be equal to the greater of (0.5 – fabs(x)), or 
0.000001 . 



 
[Note; fabs is a math.h function that returns the absolute value of x ( /x/ ).] 
 
Line 360:  t=mymax(0.5-fabs(x),0.000001); 
  

234. The value of t is reset to be equal to (-2.0*log(t))1/2  
  
 Line 361:  t=sqrt(-2.0*log(t)); 
 

235. The value of v is set to be equal to: 
  

  t-((c2*t+c1)*t+c0)/(((d3*t+d2)*t+d1)*t+1.0) 
 
 Line 362:  v=t-((c2*t+c1)*t+c0)/(((d3*t+d2)*t+d1)*t+1.0); 
 

236. An if statement is initiated. If the value of x is less than zero, then the 
value of v is reset to be equal to – v.  

  
Line 364:  if (x<0.0) 
  v=-v; 
 

237. The subroutine qerfi then returns the value of v.  
 return v; 
 
 Line 367:  return v; 

     } 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
Chapter 24: Qlra  
 

Quick Longley Rice Area parameter preparation subroutine, qlra. 
 
Note: This is the parameter preparation subroutine for the area mode.  Calls mymin and 
mymax.      
 
From ITMD Sections 42: 
 
This is used to prepare the model in the area prediction mode.  Normally, one calls qlrps 
and then qlra. 
 
Call inputs: 

 
kst,             array holding transmit & receive site selection criteria 
klimx   a.k.a. propv.klim, the radio climate code  
mdvarx   a.k.a. ivar, the variation mode code 
prop_type & prop array prop, with elements: 

prop.hg[1] receive site ground height ASL in meters 
prop.hg[0] transmit site ground height above sea level(ASL) m.  
prop.dh delta h (∆h), the terrain irregularity factor 

 prop.gme effective earth curvature = 1/effective earth radius 
  

propv_type &propv) 
 
Outputs: 
 

Subroutine qlra populates array prop with calculated values for: 
 

prop.he[0]       transmit antenna effective height above ground level 
(AGL) in meters. 

prop.he[1] receive antenna effective height AGL in meters  
 
prop.dl[0] distance to horizon(obstacle) from transmitter site 

   prop.dl[1] distance to horizon(obstacle) from receiver site 
   prop.the[0] take-off angle from transmitter antenna to horizon 

 or the top of the highest visible obstacle 
   prop.the[1] take-off angle from receiver antenna to horizon 

 or the top of the highest visible obstacle 
   prop.mdp mode of propagation (set to 1) 
   prop.lvar mode reset level switch  
   prop.klim radio climate code 
 
Declares private, or local, arguments:  



 
double q   

 
 
In this subroutine: 
 

238. A two loop for loop is initiated.  For j = 0 and then j = 1, 
 
 Line 440:   for (int j=0; j<2; ++j) 
                  { 
 

239. An if statement is embedded in the for loop.  If kst[0], the transmitter site 
selection criteria, is less than or equal to zero, then prop.he[0], the transmitter site 
effective height, is set to be equal to prop.hg[0], the transmitter antenna height 
above ground level.  

   
Line 442  if (kst[j]<=0) 
    prop.he[j]=prop.hg[j]; 
 

240. An else statement is embedded in the for loop.  On the first for loop, if 
kst[0], the transmitter site selection criteria, is greater than zero, then: 

a. The value of q is set to be equal to four. 
b. An if statement is initiated, embedded within the else statement.  If kst[0] 

is greater than zero, but is not equal to one, then the value of q is set to 
equal 9.0. 

c. A second if statement is initiated, embedded within the else statement.  If 
kst[0] is greater than zero, and if the value of prop.hg[0] is less than 5.0, 
then the value of q is reset to be equal to the previous value of q multiplied 
by: sin(0.3141593*prop.hg[0]). 

d. The value of prop.he[0] is then set to be equal to:  
 

prop.hg[0]+(1.0+q)*exp(-mymin(20.0,2.0*prop.hg[0]/mymax(1e-3,prop.dh))); 
 
 Line 444:  else 
  { 
   q=4.0; 
 
   if (kst[j]!=1) 
    q=9.0; 
 
   if (prop.hg[j]<5.0) 
    q*=sin(0.3141593*prop.hg[j]); 
 
   prop.he[j]=prop.hg[j]+(1.0+q)*exp(-
mymin(20.0,2.0*prop.hg[j]/mymax(1e-3,prop.dh))); 
  } 



 
241. The for loop continues its first loop, and:  

a. The value of q is reset to be equal to: (2.0*prop.he[0]/prop.gme)1/2 
b. The value of prop.dl[0] is set to be equal to: 

  q*exp(-0.07*(prop.dh/mymax(prop.he[0],5.0))1/2)  
c. The value of prop.the[0] is set to be equal to: 

(0.65*prop.dh*(q/prop.dl[0]-1.0)-2.0*prop.he[0] )/q; 
  
 
 Line 457: q=sqrt(2.0*prop.he[j]/prop.gme); 
  prop.dl[j]=q*exp(-0.07*sqrt(prop.dh/mymax(prop.he[j],5.0))); 
  prop.the[j]=(0.65*prop.dh*(q/prop.dl[j]-1.0)-2.0*prop.he[j])/q; 
 } 
  

242.  The for loop then starts its second loop, and we return to the first if 
statement  embedded in the for loop.  On the second for loop, If kst[1], the 
receive site selection criteria is less than or equal to zero then prop.he[1], the 
receive site effective height, is set to be equal to prop.hg[1], the receive antenna 
height above ground level.  

   
243. An else statement is embedded in the for loop.  On the second for loop, if 

kst[1], the receive site selection criteria, is greater than zero, then: 
a. The value of q is set to be equal to four. 
b. An if statement is initiated, embedded within the else statement.  If kst[1] 

is greater than zero, but is not equal to one, then the value of q is set to 
equal 9.0. 

c. A second if statement is initiated, embedded within the else statement.  If 
kst[1] is greater than zero, and if the value of prop.hg[1] is less than 5.0, 
then the value of q is reset to be equal to the previous value of q multiplied 
by: sin(0.3141593*prop.hg[1] ). 

d. The value of prop.he[1] is then set to be equal to:  
 

prop.hg[0]+(1.0+q)*exp(-mymin(20.0,2.0*prop.hg[0]/mymax(1e-3,prop.dh))); 
 

244. The for loop continues its second loop, and:  
a. The value of q is reset to be equal to: (2.0*prop.he[1]/prop.gme)1/2 
b. The value of prop.dl[1] is set to be equal to: 

  q*exp(-0.07*(prop.dh/mymax(prop.he[1],5.0))1/2)  
c. The value of prop.the[1] is set to be equal to: 

(0.65*prop.dh*(q/prop.dl[1]-1.0)-2.0*prop.he[1] )/q; 
 

245. The for loops are now complete.  The value of prop.mdp, the mode of 
propagation, is set to be equal to one.   

 
Line 462: prop.mdp=1; 
 



246.  The value of prop.lvar, the level of variation mode setup switch value that 
controls the setup of subroutine avar, is now reset to be the greater of either three, 
or the existing value of propv.lvar. 

  
Line 463:  propv.lvar=mymax(propv.lvar,3); 
 

247. An if statement is initiated.  If the value of mdvarx, the mode of variation, 
is greater than or equal to zero, then:  

a. The value of propv.mdvar is set to be equal to the value of mdvarx. 
b. The value of propv.lvar, the level of variation mode setup switch value, is 

reset to be equal to the greater of four, or the existing value of propv.lvar.  
   

Line 465:  if (mdvarx>=0) 
       { 
  propv.mdvar=mdvarx; 
  propv.lvar=mymax(propv.lvar,4); 
       } 
 

248. An if statement is initiated.  If the value of klimx, the climate code, is 
greater than zero, then: 

a. The value of propv.klim is set to be equal to the value of klimx. 
b. The value of propv.lvar is set to be equal to five. 

  
Line 471:  if (klimx>0) 
         {  
  propv.klim=klimx; 
  propv.lvar=5; 
        } 
} 
 

 
 
 
 
 
 
 
 
 
 
 



Chapter 25: Qerf 
 
Qerf   The standard normal complementary probability subroutine qerf.   
 
Note:  This is an independent, optional subroutine; not directly used in Longley–Rice.  
However, subroutine qerfi is the inverse of this function, and is called by area. Calls 
mymax. 
 
The standard normal complementary probability approximation. 
 
From ITMD Section 50: 
 
“The standard normal complementary probability ---  the function: 
 

Q(x) = [1/ (2*π)1/2] *{integral from x to infinity of} e-(t*t)/2 *dt       
 
The approximation is due to C. Hastings, Jr. (“Approximations for digital 

computers,” Princeton Univ. Press, 1955) and the maximum error should be 7.5e10-8.”   
 
Call inputs: 

 
const double &z 
 
 

Declares private, or local, arguments:  
 
 double b1=0.319381530,  

b2=-0.356563782,  
b3=1.781477937; 

 double b4=-1.821255987,  
b5=1.330274429; 

 double rp=4.317008,  
rrt2pi=0.398942280; 

  
double t,  

x,  
qerfv; 

 
 
In this subroutine: 
 

249. The value of x is set to equal the value of z. 
 
Line 1226:  x=z; 
 



250.  The value of t is set to be equal to the (absolute) value of /x/. 
 
Line 1227:  t=fabs(x); 
 

251.  An if statement is initiated.  If the value of t is greater than or equal to 10, 
then the value of qerfv is set to be equal to zero. 

 
Line 1229:  if (t>=10.0) 
  qerfv=0.0; 
 

252.  An else statement follows the if statement.  Therefore, if the value of t is 
less than 10, then: 

a. The value of t is reset to be equal to 4.317008/(t + 4.317008). 
b. The value of qerfv is set to be equal to: 

   exp(-0.5*x*x)*rrt2pi*((((b5*t+b4)*t+b3)*t+b2)*t+b1)*t; 
    where: 
     b1=0.319381530,  b2=-0.356563782,  

b3=1.781477937,  b4=-1.821255987,  
b5=1.330274429,  rrt2pi=0.398942280; 

Line 1231:  else 
 { 
  t=rp/(t+rp); 
  qerfv=exp(-0.5*x*x)*rrt2pi*((((b5*t+b4)*t+b3)*t+b2)*t+b1)*t; 
 } 
 

253. An if statement is initiated.  If the value of x is less than zero, then the 
value of qerfv is reset to be equal to 1 – qerfv.    

 
Line 1237:  if (x<0.0) 
  qerfv=1.0-qerfv; 
 

254. Subroutine qerf then returns the value of qerfv. 
 
Line 1240:  return qerfv; 

       } 
 
 
 
 
 
 
 



 
Version 7; The June, 2007 update of the ITMDLL.cpp  
 
Chapter 26:  The dissapearance of Fred’s Lrprop and 
changes to the Paul M Lrprop.  
 
The c++ source code has been made available since 2003 as file: ITMDLL.cpp, located 
on the NTIA’s website at http://flattop.its.bldrdoc.gov/itm.html.  This port is a direct as 
possible conversion of the FORTRAN code found in the appendix to NTIA Report TR-
82-100, “A Guide to the Use of the ITS Irregular Terrain Model in the Area Prediction 
Mode” [April, 1982], at http://www.its.bldrdoc.gov/pub/ntia-rpt/82-100/, converted to a 
Windows DLL-friendly code.  The published source code had remained unchanged from 
at least November 5, 2003 until June 26, 2007.  On June 26, 2007, the NTIA quietly 
released an update to the ITMDLL.cpp software code, via its website. 
 
What happened to Fred’s Lrprop? 
 
In the new version 7 of the ITMDLL.cpp, released vial the NTIA website on June 29, 
2007, the optional subroutine “freds lrprop”, found in the previous version, had been 
removed.  The NTIA made no mention on the website as to why, and there is no note in 
the source code to explain the removal.   
 
Other Changes to the ITMDLL.cpp: 
 
 
The earlier version, 1.2.2, is still available at ftp://flattop.its.bldrdoc.gov/itm, as file: 
ITMDLL_old11-5-03.cpp.  The old code does not have a version number embedded in 
the source code; the new one reports out version 7.0.   Caution may be required in 
making use of the updated version, as the FCC has specifically stated, in OET 69, 
“Longley Rice Methodology for Evaluation TV Coverage and Interference”, that version 
1.2.2 is the “version used by the FCC for its evaluations”.  The FCC also relies on 
Longley–Rice in estimating television reception coverage for satellite reception waivers, 
and accepts submissions using Longley-Rice to show whether Cities of License receive 
city-grade coverage from far-away terrain-limited transmitter sites.  
  
What changes in the new version?  I found 205 lines that have been removed, of which 2 
are consolidated.   freds lrprop, formerly occupying lines 370 to 543, is 174 lines of the 
205 removed; 8 lines of code, and 21 lines of comments, also have been removed.  There 
are eight lines of active, mandatory code that have been affected by changes, and four 
new subroutines, occupying 182 lines, have been added.  The first two, 
point_to_pointMDH and point_to_pointDH, provide welcome optional alternatives to 
the normally called point_to_point subroutine.  The other two new subroutines are 
ITMAreadBLoss, and ITMDLLVersion( ).   Including the spaces and bracket changes, 



the  old version 1.2.2 c++ code has 1,263 lines; the updated version 7.0 code has 1,239 
lines.      
 
I will be referring to the changes by line number; to follow along, I suggest that you 
download the new and old versions of the files and print them out; both are available at: 
ftp://flattop.its.bldrdoc.gov/itm.   To keep track of the line numbers, I load the file into 
Bloodshed Software’s freeware Dev-C++ version 5 (beta) IDE compiler, available at 
www.bloodshed.net/devcpp.html, and use the print setup and print functions to identify 
functions by color, word wrap, add line numbers in the margin, and then print.   
 
As to the total active changes to the non-optional subroutines, the action all occurs in one 
place: the remaining version of subroutine lrprop (a.k.a PaulM_lrprop).  Here there are 
changes between former lines 657 to 674.  These changes include: (a.) the if statements 
and actions on lines 657 and 658, and on lines 665 and 666, are consolidated onto a 
single line each (a minor change), (b.) the else statement on line 670 becomes an if (! wq) 
statement (an action suggested in a former comment, removed in the updated version, 
that was on line 669); (c.) line 671, which states: propa.ak1=(a2-a1)/(d2-d1) is changed to 
propa.ak1=FORTRAN_DIM(a2-a1)/(d2-d1), and (d.) the else statement and its following 
actions, on lines 661 to 667, are removed.  In the new code, the changed section occupies 
lines 466 to 473, so what occupied 18 lines now takes up 8 lines. 
 
What does this accomplish?  The changes to lrprop replace two “else” statements with a 
single “if” statement that does the same job; executing the calculations specified in 
equations 4.40, 4.41, and 4.42 of “The ITS Irregular Terrain Model, version 1.2.2 The 
Algorithm” by George Hufford, found at: http://flattop.its.bldrdoc.gov/itm/itm_alg.pdf .     
It appears that no code or math errors are repaired, or will be caused by, this change to 
lrprop.  It accomplishes the same task with fewer lines, so perhaps the code will execute 
a tiny bit faster. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 27:  The Unveiling of: Point_to_PointDH,   
     Point_to_PointMDH, ITMAreadBLoss,  

                     and ITMDLLVersion( ) 
 

 
  
What do the new subroutines do?  The first two, point_to_pointDH and 
point_to_pointMDH, provide optional alternatives to the point_to_point subroutine 
normally called by the separate input-output wraparound software for point-to-point 
mode signal path loss profiles and detailed area signal level mapping calculations.  
point_to_pointDH, the “Point-to-point calculations, Delta H” subroutine has only two 
changes; (1.) It changes “char *strmode to char strmode[100] and moves it out of  the line 
of declarations on line 920 to have its own place on line 1095.  (2.) In its place on line 
920 is a new declaration, double &deltaH, and at line 1132, a new line stating: deltaH = 
prop.dh; the second set of changes therefore declare a new local argument, deltaH, that 
can be read by a wraparound program without reading array “prop”, in the same way that 
“errnum” can be read, and set its value equal to the value held by prop.dh, which 
represents delta H, (∆H), the terrain irregularity factor.  
 
point_to_pointMDH, “Point-to-point calculations with Mode numbers and Delta H”,  
includes the second set of changes in point_to_pointDH above, and provides two 
additional significant, and welcome, changes.   (1.) The string mode (strmode) setup to 
allow printing out the mode, which causes, for example, the reports in SPLAT to print out 
“Line-of-Sight Mode” hundreds or thousands of times, followed by “Single Horizon” 
etc., has been replace with a simple numerical code.  The code is: -1, undefined; 0; line-
of-sight, 5, Single Horizon, Diffraction; 6, Single Horizon, Troposcatter; 9, Double 
Horizon, Diffraction; and 10, Double Horizon, Troposcatter.   The new comments 
included in the source code explain the numerical codes.  The numerical value is loaded 
into a new argument: propmode, which is declared as  int &propmode in line 994, 
allowing it to be read by the calling wraparound software in the same way as errnum can 
be read.  Last but not least, (2.) The existing point_to_point subroutine calculates 
variable amounts of statistical reliability for percentage of time, and confidence, but calls 
subroutine avar with its location percentage set to zero.  The new point_to_pointMDH 
subroutine declares a new argument, zloc, for location percentage, sets it to be equal to 
the value stored in array qerfi (locpct), and allows subroutine avar to be called with this 
value as the location percentage input, allowing statistics to be generated for time, 
location and confidence in the point_to_point mode, instead of the former limitation of 
only time and confidence.   
 
But note this: 
 
Line 1445: propv.mdvar=12; 
 



Making use of the new access to the horizontal percent input requires resettin the 
mdvar =12 statement in the new point_to_pointMDH to 3, from the current setting of 
12, prior to compiling the source code.  That is awkward, at best. 
  
NOTE:  For TV or FM broadcast use, in point_to_point mode, the mdvar is set to Mobile 
mode, not Broadcast.  The code for mdvar, the variability mode, which sets the mode of 
operation, is a tens and single digit code.  The single digits represent: 

0 - Single message mode.  Time, location and situation variability are 
combined together to give a confidence level. 

1 – Accidental mode.  Reliability is given by time availability.  
Confidence is a combination of location and situation variability. 

2 – Mobile mode.  Reliability is a combination of time and location 
variability. Confidence is given by the situation variability. 

  3 – Broadcast mode. Reliability is given by the statement of –at least- qT 
of the time in qL of the locations.  Confidence is given by the situation variability. 
 
The tens code is:  No tens; default to area mode; combined code is 0 to 3. 
  10 – For the point-to-point mode.  Location variability is eliminated. 

20 – For interference problems.  Direct situation variability is eliminated. 
Note that there may be a small residual situational variability. 

 
Note that in the point-to-point mode, location variability is supposed to be eliminated, 
according to “The Algorithm”.  In fact, there is a minor cautionary bug that causes the 
horizontal to be set equal to the time in area-mobile and interference-mobile situations; 
since the mdvar is hard coded in point-to-point, it is not considered serious enough to 
warrant inclusion in the seven significant sicknesses.  See discussion in chapter 20, Avar, 
as this occurs in the subroutine avar in response to the setting of the mdvar code.  So the 
hard-coded setting of mdvar equal to 12, hard-coded into all three of the point_to_point 
subroutines in the ITMDLL.cpp, means that the current version of ITMDLL.cpp is never 
intended to be used for broadcast calculation of location variability, unless the value of 
mdvar is changed in the source code and the ITMDLL is re-compiled. 
 
Note: Therefore, for broadcast reception prediction use, the ITMDLL should be 
modified to allow external resetting of the mdvar; this is especially critical in light of 
the new optional subroutine point_to_pointMDP, which allows for setting the 
percentage value for location. 
 
ITMAreadBLoss, “ITM Area dB Loss”, when called, calls subroutine area, “Area mode 
calculations”, and reports out the value of “dbloss” calculated by subroutine area. 
ITMDLLVersion( ), “ITMDLL Version Number” when called, reports out “7.0”. 
 
The ITM predicts signal strength loss in three “modes”.  The first, starting at the 
transmission site, is the line of sight mode, which switches to the edge diffraction mode 
where the path threatens to graze the earth for smooth earth (at the horizon) or at an 
obstruction.  As the path length increases, the edge diffraction dominant mode fades into 
the troposcatter dominant mode, and goes to full troposcatter mode at far distances.  Even 



after thirty years in use, there are still mathematical and coding errors and obsolete 
computer approximations in the ITM code that affect the quality of the predictions in all 
three modes.  These problems have not been addressed, and remain uncorrected, in 
version 7.0.  Many of these errors track back to, and can be seen in the FORTRAN 
version found in Appendix A of NTIA Report TR-82-100, and have therefore existed for 
a quarter of a century.  In the following articles, I will address the coding and 
mathematical errors in the subroutines found in both c++ versions. 


