

Abwehr von unbemannten Flugobjekten für Behörden und Organisationen mit Sicherheitsaufgaben

CEPT Workshop on Spectrum for Drones / UAS

Detection of Drones - Research Project AMBOS -

Copenhagen, 29 June 2018

Christoph Sulzbachner

Hans Peter Stuch

The AMBOS Project

Abwehr von unbemannten Flugobjekten für Behörden und Organisationen mit Sicherheitsaufgaben

Defence of Unmanned Aerial Vehicles for Safety and Security Authorities

Sponsored within the frame work of the

Ziviles Sicherheitsforschungsprogramm in Germany and the KIRAS program in Austria

Sponsored by:

Bundesministerium für Bildung und Forschung

AMBOS is a bi-national project

Bundesministerium für Verkehr, Innovation und Technologie

Motivation and Basic Concept

Goals

Implementation of Demonstrator Systems – one each in Austria und Germany

- Systematical investigations of the included components with respect to the performance regarding defence against Unmanned Aerial Vehicles
 - Basis: Scenarios described by users of such systems
 - Demonstrate possible features
 - Identify limits
 - Define / describe a product
 - Identify necessary additional research

Project time: 2 years

Structure of the System

ethic Civic, legal, Complementing research:

Focal points of the Austrian approach

ethic Civic, legal, **Complementing research:**

Focal points of the German approach

ethic Civic, legal, **Complementing research:**

Austrian Partners

AMBOS

Lead: AIT Austrian Institute of Technology Coordinator: Christoph Sulzbachner

German Partners

Lead: Fraunhofer-Institute FKIE Coordinator: Hans Peter Stuch

Scientific and technical approaches for the UAV-detection

Acoustical Detection

Testing of complementing approaches

Hardware

- Diehl: Local centric microphone array
- IDMT: Distributed sensors

Algorithms

- FKIE: Deterministic approach
- IDMT: Statistical approach

Optical Detection

Machine Learning used for classification of UAV

Radio Reconnaissance

Use of Software Defined Radios and COTS-Products => Cost-effective approach

Application of State-of-the-Art signal processing algorithms basis for further optimization

Sensor Data Fusion

Application of a Fusion Engine Based on scientific methods not just the combination of sensor data – but the fusion of the information

Situation Display and Decision Support

In close contact with the users decision strategies are designed and developed for the operation in real time software environments

Human-in-the-Loop Approach

Challenges

Acoustical Detection

Achiving robustness for the detection – incl. direction finding and classification of UAV in operational scenarios with real ambient noises

Optical Detection

Find an optimal configuration regarding resolution, number of cameras, computing power etc.

Radio Reconnaissance

Detection of a multitude of RF-signal characteristics – incl.

- the pairing phase UAV ⇔ remote control
- Manufacture specific communication in up- & downlink

Direction finding of the the UAV and the remote control

Limited reaction time due to rapid attack scenarios

• Detection + signal analysis + direction finding

Operation in urban environment (vs. line-of-sight scenarios)

Challenges

Sensor Data Fusion

Achiving robustness of the detection results in a sense of True/Positive, True/Negative, False/Positive and False/Negative

Situation Display and Decision Support

Displaying the complex operation environments and the dynamic time critical police specific decision finding

Intervention: Jamming, HPEM und Net Gun

Achiving maximum range – causing minimal collateral damage

Entire AMBOS System

Design technical solutions, which provide maximum performance within the legal, societal and ethical context

Contacts

Fraunhofer-Institute for Communication, Information Processing und Ergonomics FKIE

Fraunhoferstr. 20, Germany – 53343 Wachtberg

Point of Contact

Hans Peter Stuch I +49 228 9435-850 I hans-peter.stuch@fkie.fraunhofer.de

Austrian Institute of Technology

Donau-City-Str. 1, Austria – 1220 Wien

Point of Contact

Christoph Sulzbachner I +43 664 8251342 I christoph.sulzbachner@ait.ac.at

AMBOS

